def close(self): '''closing instruments: ''' AWG.Abort_Gen(self.awgsess) AWG.close(self.awgsess) PSGA.rfoutput(self.saga, action=['Set', 0]) PSGA.close(self.saga, False) MXA.close(self.mxa, False)
@author: mesch """ from colorama import init, Fore, Back init(autoreset=True) #to convert termcolor to wins color import copy from pyqum.instrument.benchtop import RSA5, PSGA, MXA from pyqum.instrument.modular import AWG from pyqum.instrument.logger import status_code from pyqum.instrument.analyzer import curve from numpy import sin, cos, pi, array, float64, sum, dot # Initialize instruments: # PSGA saga = PSGA.Initiate() PSGA.rfoutput(saga, action=['Set', 1]) PSGA.frequency(saga, action=['Set', "5.5" + "GHz"]) PSGA.power(saga, action=['Set', "12" + "dBm"]) # SA mxa = MXA.Initiate() MXA.frequency(mxa, action=['Set', '5.525GHz']) MXA.fspan(mxa, action=['Set', '150MHz']) MXA.rbw(mxa, action=['Set', '1MHz']) MXA.vbw(mxa, action=['Set', '100kHz']) MXA.trigger_source(mxa, action=['Set', 'EXTernal1']) # AWG awgsess = AWG.InitWithOptions() AWG.Abort_Gen(awgsess) AWG.ref_clock_source(awgsess, action=['Set', int(1)]) # External 10MHz clock-reference
def Initialize(self): # Initialize instruments: # PSGA self.saga = PSGA.Initiate() PSGA.rfoutput(self.saga, action=['Set', 1]) PSGA.frequency(self.saga, action=['Set', "5.5" + "GHz"]) PSGA.power(self.saga, action=['Set', "12" + "dBm"]) # SA self.mxa = MXA.Initiate() MXA.frequency(self.mxa, action=['Set', '5.525GHz']) MXA.fspan(self.mxa, action=['Set', '150MHz']) MXA.rbw(self.mxa, action=['Set', '1MHz']) MXA.vbw(self.mxa, action=['Set', '100kHz']) MXA.trigger_source(self.mxa, action=['Set', 'EXTernal1']) # AWG self.awgsess = AWG.InitWithOptions() AWG.Abort_Gen(self.awgsess) AWG.ref_clock_source(self.awgsess, action=['Set', int(1)]) # External 10MHz clock-reference AWG.predistortion_enabled(self.awgsess, action=['Set', True]) AWG.output_mode_adv(self.awgsess, action=['Set', int(2)]) # Sequence output mode AWG.arb_sample_rate(self.awgsess, action=['Set', float(1250000000) ]) # maximum sampling rate AWG.active_marker(self.awgsess, action=['Set', '3']) # master AWG.marker_delay(self.awgsess, action=['Set', float(0)]) AWG.marker_pulse_width(self.awgsess, action=['Set', float(1e-7)]) AWG.marker_source(self.awgsess, action=['Set', int(7)]) samplingrate = AWG.arb_sample_rate(self.awgsess)[1] dt = 1e9 / samplingrate # in ns # PRESET Output: for ch in range(2): channel = str(ch + 1) AWG.output_config(self.awgsess, RepCap=channel, action=["Set", 0]) # Single-ended AWG.output_filter_bandwidth(self.awgsess, RepCap=channel, action=["Set", 0]) AWG.arb_gain(self.awgsess, RepCap=channel, action=["Set", 0.5]) AWG.output_impedance(self.awgsess, RepCap=channel, action=["Set", 50]) # output settings: for ch in range(2): channel = str(ch + 1) AWG.output_enabled(self.awgsess, RepCap=channel, action=["Set", int(1)]) # ON AWG.output_filter_enabled(self.awgsess, RepCap=channel, action=["Set", True]) AWG.output_config(self.awgsess, RepCap=channel, action=["Set", int(2)]) # Amplified 1:2 AWG.output_filter_bandwidth(self.awgsess, RepCap=channel, action=["Set", 0]) AWG.arb_gain(self.awgsess, RepCap=channel, action=["Set", 0.5]) AWG.output_impedance(self.awgsess, RepCap=channel, action=["Set", 50])
def test(): LO_0 = float((MXA.fpower(mxa, str(5.5) + 'GHz')).split('dBm')[0]) Mirror_0 = float((MXA.fpower(mxa, str(5.475) + 'GHz')).split('dBm')[0]) Initial = [0., 0., 1., 0., 0.] time = 0 OPT = IQ_Cal() OPT.IQparams = array(Initial, dtype=float64) #overwrite initial values result = OPT.nelder_mead(time=time) prev = result[0] no_improv, no_improv_thr, no_improv_break = 0, 1e-5, 4 LO, Mirror, T = [], [], [] while True: time += 1 if time % 2: OPT = IQ_Cal('MR', result[0], ratio=time) else: OPT = IQ_Cal('LO', result[0], ratio=time) result = OPT.nelder_mead(time=time) # if len(result) == 3: # print("Optimized IQ parameters:\n %s" %result) # break LO.append( float((MXA.fpower(mxa, str(5.5) + 'GHz')).split('dBm')[0]) - LO_0) Mirror.append( float((MXA.fpower(mxa, str(5.475) + 'GHz')).split('dBm')[0]) - Mirror_0) print(Back.BLUE + Fore.WHITE + "Mirror has been suppressed for %s from %s" % (Mirror[-1], Mirror_0)) T.append(time) ssq = sum((result[0] - prev)**2) if ssq > no_improv_thr: no_improv = 0 prev = result[0] else: no_improv += 1 if no_improv >= no_improv_break: AWG_Sinewave(25, OPT.IQparams) print(type(OPT.IQparams)) print("Optimized IQ parameters:\n %s" % result) print("Amplitude Imbalance:\n %s" % OPT.IQparams[2]) if OPT.IQparams[3] > OPT.IQparams[ 4] and OPT.IQparams[3] - OPT.IQparams[4] < 180: print("phase skew I-Q:\n %s" % (OPT.IQparams[3] - OPT.IQparams[4])) if OPT.IQparams[3] > OPT.IQparams[ 4] and OPT.IQparams[3] - OPT.IQparams[4] > 180: print("phase skew Q-I:\n %s" % (360 - (OPT.IQparams[3] - OPT.IQparams[4]))) if (OPT.IQparams[4] > OPT.IQparams[3] and OPT.IQparams[4] - OPT.IQparams[3] < 180) or ( OPT.IQparams[3] > OPT.IQparams[4] and OPT.IQparams[3] - OPT.IQparams[4] > 180): print("phase skew Q-I:\n %s" % (OPT.IQparams[4] - OPT.IQparams[3])) if (OPT.IQparams[2] > -1.0) and (OPT.IQparams[2] < 1.0): Iamp = 1 Qamp = Iamp * OPT.IQparams[2] else: Qamp = 1 Iamp = Qamp / OPT.IQparams[2] print("Ioffset:\n %s" % OPT.IQparams[0]) print("Qoffset:\n %s" % OPT.IQparams[1]) print("Iamp:\n %s" % Iamp) print("Qamp:\n %s" % Qamp) print("Iphase:\n %s" % OPT.IQparams[3]) print("Qphase:\n %s" % OPT.IQparams[4]) break curve(T, LO, 'LO Leakage vs time', 'T(#)', 'DLO(dB)') curve(T, Mirror, 'Mirror Image vs time', 'T(#)', 'DMirror(dB)') # closing instruments: ans = input("Press any keys to close AWG, PSGA and RSA-5 ") AWG.Abort_Gen(awgsess) AWG.close(awgsess) PSGA.rfoutput(saga, action=['Set', 0]) PSGA.close(saga, False) MXA.close(mxa, False)
def __init__(self, LO_freq, LO_powa, IF_freq): ''' Initialize relevant instruments: LO_freq: LO frequency in GHz LO_powa: LO power in dBm IF_freq: IF frequency in GHz ''' self.LO_freq, self.LO_powa, self.IF_freq = LO_freq, LO_powa, IF_freq # SA self.mxa = MXA.Initiate() MXA.frequency(self.mxa, action=['Set', '%sGHz' % (LO_freq + IF_freq)]) MXA.fspan(self.mxa, action=['Set', '150MHz']) MXA.rbw(self.mxa, action=['Set', '1MHz']) MXA.vbw(self.mxa, action=['Set', '100kHz']) MXA.trigger_source(self.mxa, action=['Set', 'EXTernal1']) # PSGA self.saga = PSGA.Initiate() PSGA.rfoutput(self.saga, action=['Set', 1]) PSGA.frequency(self.saga, action=['Set', "%sGHz" % LO_freq]) PSGA.power(self.saga, action=['Set', "%sdBm" % LO_powa]) # AWG self.awgsess = AWG.InitWithOptions() AWG.Abort_Gen(self.awgsess) AWG.ref_clock_source(self.awgsess, action=['Set', int(1)]) # External 10MHz clock-reference AWG.predistortion_enabled(self.awgsess, action=['Set', True]) AWG.output_mode_adv(self.awgsess, action=['Set', int(2)]) # Sequence output mode AWG.arb_sample_rate(self.awgsess, action=['Set', float(1250000000) ]) # maximum sampling rate AWG.active_marker(self.awgsess, action=['Set', '3']) # master AWG.marker_delay(self.awgsess, action=['Set', float(0)]) AWG.marker_pulse_width(self.awgsess, action=['Set', float(1e-7)]) AWG.marker_source(self.awgsess, action=['Set', int(7)]) # PRESET Output: for ch in range(2): channel = str(ch + 1) AWG.output_config(self.awgsess, RepCap=channel, action=["Set", 0]) # Single-ended AWG.output_filter_bandwidth(self.awgsess, RepCap=channel, action=["Set", 0]) AWG.arb_gain(self.awgsess, RepCap=channel, action=["Set", 0.5]) AWG.output_impedance(self.awgsess, RepCap=channel, action=["Set", 50]) # output settings: for ch in range(2): channel = str(ch + 1) AWG.output_enabled(self.awgsess, RepCap=channel, action=["Set", int(1)]) # ON AWG.output_filter_enabled(self.awgsess, RepCap=channel, action=["Set", True]) AWG.output_config(self.awgsess, RepCap=channel, action=["Set", int(2)]) # Amplified 1:2 AWG.output_filter_bandwidth(self.awgsess, RepCap=channel, action=["Set", 0]) AWG.arb_gain(self.awgsess, RepCap=channel, action=["Set", 0.5]) AWG.output_impedance(self.awgsess, RepCap=channel, action=["Set", 50])
def SQE_Pulse(user, tag="", corder={}, comment='', dayindex='', taskentry=0, resumepoint=0, instr=['YOKO', 'PSGV', 'PSGA', 'AWG', 'VSA'], testeach=False): '''Time-domain Square-wave measurement: C-Structure: ['Flux-Bias', 'Average', 'Pulse-Period', 'ADC-delay', 'LO-Frequency', 'LO-Power', 'RO-Frequency', 'RO-Power', 'RO-ifLevel', 'RO-Pulse-Delay', 'RO-Pulse-Width', 'XY-Frequency', 'XY-Power', 'XY-ifLevel', 'XY-Pulse-Delay', 'XY-Pulse-Width', 'Sampling-Time'] (IQ-Bandwidth (250MHz or its HALFlings) + Acquisition-Time (dt must be multiples of 2ns)) ''' # Loading sample: sample = get_status("MSSN")[session['user_name']]['sample'] # sample = get_status("MSSN")['abc']['sample'] # by-pass HTTP-request before interface is ready # pushing pre-measurement parameters to settings: yield user, sample, tag, instr, corder, comment, dayindex, taskentry, testeach # ***USER_DEFINED*** Controlling-PARAMETER(s) ====================================================================================== structure = corder['C-Structure'] fluxbias = waveform(corder['Flux-Bias']) averaging = waveform(corder['Average']) pperiod = waveform(corder['Pulse-Period']) adcdelay = waveform(corder['ADC-delay']) lofreq = waveform(corder['LO-Frequency']) lopowa = waveform(corder['LO-Power']) rofreq = waveform(corder['RO-Frequency']) ropowa = waveform(corder['RO-Power']) roiflevel = waveform(corder['RO-ifLevel']) ropdelay = waveform(corder['RO-Pulse-Delay']) ropwidth = waveform(corder['RO-Pulse-Width']) xyfreq = waveform(corder['XY-Frequency']) xypowa = waveform(corder['XY-Power']) xyiflevel = waveform(corder['XY-ifLevel']) xypdelay = waveform(corder['XY-Pulse-Delay']) xypwidth = waveform(corder['XY-Pulse-Width']) samptime = waveform(corder['Sampling-Time']) # Total data points: datasize = int( prod([waveform(corder[param]).count for param in structure], dtype='uint64')) * 2 #data density of 2 due to IQ print("data size: %s" % datasize) # Pre-loop settings: # Optionals: # YOKO: if "opt" not in fluxbias.data: # check if it is in optional-state / serious-state yokog = YOKO.Initiate(current=True) # pending option YOKO.output(yokog, 1) # PSGV: if "opt" not in xyfreq.data: # check if it is in optional-state / serious-state sogo = PSG0.Initiate() # pending option PSG0.rfoutput(sogo, action=['Set', 1]) # Basics: # PSGA for LO: saga = PSG1.Initiate() # pending option PSG1.rfoutput(saga, action=['Set', 1]) # AWG for Control: awgsess = AWG.InitWithOptions() AWG.Abort_Gen(awgsess) AWG.ref_clock_source(awgsess, action=['Set', int(1)]) # External 10MHz clock-reference AWG.predistortion_enabled(awgsess, action=['Set', True]) AWG.output_mode_adv(awgsess, action=['Set', int(2)]) # Sequence output mode AWG.arb_sample_rate(awgsess, action=['Set', float(1250000000)]) # maximum sampling rate AWG.active_marker(awgsess, action=['Set', '1']) # master AWG.marker_delay(awgsess, action=['Set', float(0)]) AWG.marker_pulse_width(awgsess, action=['Set', float(1e-7)]) AWG.marker_source(awgsess, action=['Set', int(7)]) # PRESET Output: for ch in range(2): channel = str(ch + 1) AWG.output_config(awgsess, RepCap=channel, action=["Set", 0]) # Single-ended AWG.output_filter_bandwidth(awgsess, RepCap=channel, action=["Set", 0]) AWG.arb_gain(awgsess, RepCap=channel, action=["Set", 0.5]) AWG.output_impedance(awgsess, RepCap=channel, action=["Set", 50]) # output settings: for ch in range(2): channel = str(ch + 1) AWG.output_enabled(awgsess, RepCap=channel, action=["Set", int(1)]) # ON AWG.output_filter_enabled(awgsess, RepCap=channel, action=["Set", True]) AWG.output_config(awgsess, RepCap=channel, action=["Set", int(2)]) # Amplified 1:2 AWG.output_filter_bandwidth(awgsess, RepCap=channel, action=["Set", 0]) AWG.arb_gain(awgsess, RepCap=channel, action=["Set", 0.5]) AWG.output_impedance(awgsess, RepCap=channel, action=["Set", 50]) # VSA for Readout vsasess = VSA.InitWithOptions() # Buffer-size for lowest-bound data-collecting instrument: buffersize_1 = samptime.count * 2 #data density of 2 due to IQ print("Buffer-size: %s" % buffersize_1) # User-defined Measurement-FLOW ============================================================================================== if testeach: # measure-time contribution from each measure-loop loopcount, loop_dur = [], [] stage, prev = clocker(0) # Marking starting point of time # Registerring parameter(s)-structure cstructure = [waveform(corder[param]).count for param in structure ][:-1] # The last one will become a buffer print('cstructure: %s' % cstructure) measure_loop_1 = range( resumepoint // buffersize_1, datasize // buffersize_1) # saving chunck by chunck improves speed a lot! while True: for i in measure_loop_1: print(Back.BLUE + Fore.WHITE + 'measure %s/%s' % (i, datasize // buffersize_1)) # determining the index-locations for each parameters, i.e. the address at any instance caddress = cdatasearch(i, cstructure) # setting each c-order (From High to Low level of execution): # *************************************************************** for j in range( len(cstructure) - 1): # the last one will be run for every i (common sense!) if ( not i % prod(cstructure[j + 1::]) ) or i == resumepoint // buffersize_1: # virtual for-loop using exact-multiples condition # print("entering %s-stage" %j) # Optionals: # YOKO if structure[j] == 'Flux-Bias': if "opt" not in fluxbias.data: # check if it is in optional-state if testeach: # adding instrument transition-time between set-values: loopcount += [fluxbias.count] if fluxbias.count > 1: loop_dur += [ abs(fluxbias.data[0] - fluxbias.data[1]) / 0.2 + 35 * 1e-3 ] # manually calculating time without really setting parameter on the instrument else: loop_dur += [0] stage, prev = clocker(stage, prev) # Marking time else: YOKO.sweep( yokog, str(fluxbias.data[caddress[structure.index( 'Flux-Bias')]]), pulsewidth=77 * 1e-3, sweeprate=0.0007 ) # A-mode: sweeprate=0.0007 A/s ; V-mode: sweeprate=0.07 V/s # PSG if structure[j] == 'XY-Frequency': if "opt" not in xyfreq.data: # check if it is in optional-state PSG0.frequency( sogo, action=[ 'Set', str(xyfreq.data[caddress[structure.index( 'XY-Frequency')]]) + "GHz" ]) if structure[j] == 'XY-Power': if "opt" not in xypowa.data: # check if it is in optional-state PSG0.power(sogo, action=[ 'Set', str(xypowa.data[caddress[ structure.index('XY-Power')]]) + "dBm" ]) if structure[j] == 'RO-Frequency': if "opt" not in rofreq.data: # check if it is in optional-state PSG1.frequency( saga, action=[ 'Set', str(rofreq.data[caddress[structure.index( 'RO-Frequency')]]) + "GHz" ]) if structure[j] == 'RO-Power': if "opt" not in ropowa.data: # check if it is in optional-state PSG1.power(saga, action=[ 'Set', str(ropowa.data[caddress[ structure.index('RO-Power')]]) + "dBm" ]) # AWG (Every-loop) if "opt" not in pperiod.data: # check if it is in optional-state AWG.Clear_ArbMemory(awgsess) WAVE = [] # construct waveform: ifperiod = pperiod.data[caddress[structure.index( 'Pulse-Period')]] ifscale = float( xyiflevel.data[caddress[structure.index('XY-ifLevel')]] ), float( roiflevel.data[caddress[structure.index('RO-ifLevel')]]) if "lockxypwd" in str(ropdelay.data[0]): if '+' in str(ropdelay.data[0]): rooffset = float(ropdelay.data[0].split('+')[1]) else: rooffset = 0 # default value ifdelay = float(xypdelay.data[caddress[structure.index( 'XY-Pulse-Delay')]]), float(xypwidth.data[caddress[ structure.index('XY-Pulse-Width')]]) + rooffset print("RO-Pulse Delays behind XY-Pulse for %sns" % (ifdelay[1] - ifdelay[0])) else: ifdelay = float(xypdelay.data[caddress[structure.index( 'XY-Pulse-Delay')]]), float(ropdelay.data[caddress[ structure.index('RO-Pulse-Delay')]]) ifontime = float( xypwidth.data[caddress[structure.index('XY-Pulse-Width')]] ), float( ropwidth.data[caddress[structure.index('RO-Pulse-Width')]]) for ch in range(2): channel = str(ch + 1) wavefom = squarewave(ifperiod, ifontime[ch], ifdelay[ch], ifscale[ch]) # in ns stat, wave = AWG.CreateArbWaveform(awgsess, wavefom) print('Waveform channel %s: %s <%s>' % (channel, wave, status_code(stat))) WAVE.append(wave) # Building Sequences: for ch in range(2): channel = str(ch + 1) status, seqhandl = AWG.CreateArbSequence( awgsess, [WAVE[ch]], [1] ) # loop# canbe >1 if longer sequence is needed in the future! # print('Sequence channel %s: %s <%s>' %(channel, seqhandl, status_code(status))) # Channel Assignment: stat = AWG.arb_sequence_handle(awgsess, RepCap=channel, action=["Set", seqhandl]) # print('Sequence channel %s embeded: %s <%s>' %(channel, stat[1], status_code(stat[0]))) # Trigger Settings: for ch in range(2): channel = str(ch + 1) AWG.operation_mode(awgsess, RepCap=channel, action=["Set", 0]) AWG.trigger_source_adv(awgsess, RepCap=channel, action=["Set", 0]) AWG.Init_Gen(awgsess) AWG.Send_Pulse(awgsess, 1) # Basic / Buffer: # VSA (Every-loop) VSA.acquisition_time(vsasess, action=['Set', float(samptime.count * 2e-9) ]) # minimum time resolution VSA.preselector_enabled(vsasess, action=[ 'Set', False ]) # disable preselector to allow the highest bandwidth of 250MHz if "lockro" in str(lofreq.data[0]): if '+' in str(lofreq.data[0]): lof_offset = float(lofreq.data[0].split('+')[1]) elif '-' in str(lofreq.data[0]): lof_offset = -float(lofreq.data[0].split('-')[1]) else: lof_offset = 0 # default value VSA.frequency(vsasess, action=[ 'Set', float(rofreq.data[caddress[structure.index( 'RO-Frequency')]]) * 1e9 + lof_offset ]) # freq offset / correction in Hz print("Locking on RO at %sGHz" % (VSA.frequency(vsasess)[1] / 1e9)) else: VSA.frequency(vsasess, action=[ 'Set', float(lofreq.data[caddress[structure.index( 'LO-Frequency')]]) * 1e9 ]) VSA.power( vsasess, action=[ 'Set', float(lopowa.data[caddress[structure.index('LO-Power')]]) ]) VSA.bandwidth( vsasess, action=['Set', 250e6] ) # maximum LO bandwidth of 250MHz (500MHz Sampling-rate gives 2ns of time resolution) VSA.trigger_source(vsasess, action=['Set', int(1)]) # External Trigger (slave) # Delay for Readout if "lockxypwd" in str(ropdelay.data[0]): # trigger-delay sync with xy-pulse-width for Rabi measurement: VSA.trigger_delay(vsasess, action=['Set', float(adcdelay.data[caddress[structure.index('ADC-delay')]]) + \ float(xypwidth.data[caddress[structure.index('XY-Pulse-Width')]])*1e-9 + rooffset*1e-9]) print("ACQ delays with XY-Pulse for %sns" % int(VSA.trigger_delay(vsasess)[1] / 1e-9)) elif "lockropdelay" in str(adcdelay.data[0]): # trigger-delay sync with ro-pulse-delay for T1 measurement: VSA.trigger_delay( vsasess, action=[ 'Set', float(ropdelay.data[caddress[structure.index( 'RO-Pulse-Delay')]]) * 1e-9 ]) print("ACQ delays with RO-Pulse for %sns" % int(VSA.trigger_delay(vsasess)[1] / 1e-9)) else: VSA.trigger_delay(vsasess, action=[ 'Set', float(adcdelay.data[caddress[ structure.index('ADC-delay')]]) ]) VSA.external_trigger_level(vsasess, action=['Set', float(0.3)]) VSA.external_trigger_slope(vsasess, action=['Set', int(1)]) # Positive slope VSA.trigger_timeout(vsasess, action=['Set', int(1000)]) # 1s of timeout stat = VSA.Init_Measure(vsasess) # Initiate Measurement # Start Quantum machine: # Start Averaging Loop: avenum = int(averaging.data[caddress[structure.index('Average')]]) vsasn = VSA.samples_number(vsasess)[1] iqdata = zeros((avenum, 2 * vsasn)) for ave in range(avenum): VSA.Arm_Measure(vsasess) gd = VSA.Get_Data(vsasess, 2 * vsasn) iqdata[ave, :] = array(gd[1]['ComplexData']) iqdata = mean(iqdata, axis=0) print("Operation Complete") print(Fore.YELLOW + "\rProgress: %.3f%%" % ((i + 1) / datasize * buffersize_1 * 100), end='\r', flush=True) # test for the last loop if there is if testeach: # test each measure-loop: loopcount += [len(measure_loop_1)] loop_dur += [time() - prev] stage, prev = clocker(stage, prev) # Marking time VSA.close(vsasess) if "opt" not in pperiod.data: # check if it is in optional-state AWG.close(awgsess) if "opt" not in xyfreq.data: # check if it is in optional-state PSG0.close(sogo, False) if "opt" not in rofreq.data: # check if it is in optional-state PSG1.close(saga, False) if "opt" not in fluxbias.data: # check if it is in optional-state YOKO.close(yokog, False) yield loopcount, loop_dur else: if get_status("SQE_Pulse")['pause']: break else: yield list(iqdata) if not get_status("SQE_Pulse")['repeat']: set_status("SQE_Pulse", dict(pause=True)) VSA.close(vsasess) if "opt" not in pperiod.data: # check if it is in optional-state AWG.Abort_Gen(awgsess) AWG.close(awgsess) if "opt" not in xyfreq.data: # check if it is in optional-state PSG0.rfoutput(sogo, action=['Set', 0]) PSG0.close(sogo, False) if "opt" not in rofreq.data: # check if it is in optional-state PSG1.rfoutput(saga, action=['Set', 0]) PSG1.close(saga, False) if "opt" not in fluxbias.data: # check if it is in optional-state YOKO.output(yokog, 0) YOKO.close(yokog, False) return