Example #1
0
def dc_yokogawa_vpulse():
	global yokog
	YOKO.output(yokog, 1)
	vset = float(request.args.get('vset'))
	pwidth = float(request.args.get("pwidth"))
	stat = YOKO.sweep(yokog, "%sto0*1"%vset, pulsewidth=pwidth*1e-3, sweeprate=abs(vset)*60)
	return jsonify(SweepTime=stat[1])
Example #2
0
def dc_yokogawa_vwave():
	global yokog
	YOKO.output(yokog, 1)
	vwave = request.args.get('vwave') #V-waveform command
	pwidth = float(request.args.get("pwidth")) #ms
	swprate = float(request.args.get("swprate")) #V/s
	stat = YOKO.sweep(yokog, vwave, pulsewidth=pwidth*1e-3, sweeprate=swprate)
	return jsonify(SweepTime=stat[1])
Example #3
0
def dcyokogawa():
    global yokog
    yokostat = request.args.get('yokostat')
    ykwhich = int(request.args.get('ykwhich'))
    print(Fore.GREEN + "Connecting to YoKoGaWa-%s" % ykwhich)
    ykvaunit = bool(int(request.args.get('ykvaunit')))
    print(Fore.YELLOW + "Current mode: %s" % ykvaunit)
    if yokostat == 'true':
        yokog = YOKO.Initiate(current=ykvaunit, which=ykwhich)
        prev = YOKO.previous(yokog)
    elif yokostat == 'false':
        prev = YOKO.previous(yokog)
        YOKO.close(yokog, True)
    return jsonify(prev=prev)
Example #4
0
def F_Response(user,
               tag="",
               corder={},
               comment='',
               dayindex='',
               taskentry=0,
               resumepoint=0,
               instr=['YOKO', 'ENA'],
               testeach=False):
    '''Characterizing Frequency Response:
	C-Order: Flux-Bias, S-Parameter, IF-Bandwidth, Power, Frequency
	'''
    sample = get_status("MSSN")['sample']
    # pushing pre-measurement parameters to settings:
    yield user, sample, tag, instr, corder, comment, dayindex, taskentry, testeach

    # User-defined Controlling-PARAMETER(s) ======================================================================================
    fluxbias = waveform(corder['Flux-Bias'])
    Sparam = waveform(corder['S-Parameter'])
    ifb = waveform(corder['IF-Bandwidth'])
    powa = waveform(corder['Power'])
    freq = waveform(corder['Frequency'])
    # Total data points:
    datasize = prod([waveform(x).count for x in corder.values()
                     ]) * 2  #data density of 2 due to IQ

    # Pre-loop settings:
    # ENA:
    bench = ENA.Initiate(True)
    ENA.dataform(bench, action=['Set', 'REAL'])
    ENA.sweep(bench, action=['Set', 'ON', freq.count])
    fstart, fstop = freq.data[0] * 1e9, freq.data[-1] * 1e9
    ENA.linfreq(bench, action=['Set', fstart,
                               fstop])  # Linear Freq-sweep-range
    # YOKO:
    if "opt" not in fluxbias.data:  # check if it is in optional-state
        yokog = YOKO.Initiate(
            current=True
        )  # PENDING option: choose between Voltage / Current output
        YOKO.output(yokog, 1)

    # Buffer setting(s) for certain loop(s):
    buffersize_1 = freq.count * 2  #data density of 2 due to IQ

    # User-defined Measurement-FLOW ==============================================================================================
    if testeach:  # measure-time contribution from each measure-loop
        loopcount, loop_dur = [], []
        stage, prev = clocker(0)  # Marking starting point of time

    # Registerring parameter(s)-structure
    cstructure = [fluxbias.count, Sparam.count, ifb.count, powa.count]

    # set previous parameters based on resumepoint:
    if resumepoint > 0:
        caddress = cdatasearch(resumepoint // buffersize_1, cstructure)
        # Only those involved in virtual for-loop need to be pre-set here:
        if "opt" not in fluxbias.data:  # check if it is in optional-state
            YOKO.sweep(
                yokog,
                str(fluxbias.data[caddress[0]]),
                pulsewidth=77 * 1e-3,
                sweeprate=0.0007
            )  # A-mode: sweeprate=0.0007 A/s ; V-mode: sweeprate=0.07 V/s
        ENA.setrace(bench, Mparam=[Sparam.data[caddress[1]]], window='D1')
        ENA.ifbw(bench, action=['Set', ifb.data[caddress[2]]])

    measure_loop_1 = range(
        resumepoint // buffersize_1, datasize //
        buffersize_1)  # saving chunck by chunck improves speed a lot!
    while True:
        for i in measure_loop_1:

            # Registerring parameter(s)
            caddress = cdatasearch(i, cstructure)

            # setting each c-order (From High to Low level of execution):
            if not i % prod(cstructure[
                    1::]):  # virtual for-loop using exact-multiples condition
                if "opt" not in fluxbias.data:  # check if it is in optional-state
                    if testeach:  # test each measure-loop:
                        loopcount += [fluxbias.count]
                        if fluxbias.count > 1:
                            loop_dur += [
                                abs(fluxbias.data[0] - fluxbias.data[1]) / 0.2
                                + 35 * 1e-3
                            ]
                        else:
                            loop_dur += [0]
                        stage, prev = clocker(stage, prev)  # Marking time
                    else:
                        YOKO.sweep(
                            yokog,
                            str(fluxbias.data[caddress[0]]),
                            pulsewidth=77 * 1e-3,
                            sweeprate=0.0007
                        )  # A-mode: sweeprate=0.0007 A/s ; V-mode: sweeprate=0.07 V/s

            if not i % prod(cstructure[
                    2::]):  # virtual for-loop using exact-multiples condition
                ENA.setrace(bench,
                            Mparam=[Sparam.data[caddress[1]]],
                            window='D1')

            if not i % prod(cstructure[
                    3::]):  # virtual for-loop using exact-multiples condition
                ENA.ifbw(bench, action=['Set', ifb.data[caddress[2]]])

            ENA.power(bench, action=['Set', powa.data[caddress[3]]
                                     ])  # same as the whole measure-loop

            # start sweeping:
            stat = ENA.sweep(bench)  #getting the estimated sweeping time
            print("Time-taken for this loop would be: %s (%spts)" %
                  (stat[1]['TIME'], stat[1]['POINTS']))
            print("Operation Complete: %s" % bool(ENA.measure(bench)))
            # adjusting display on ENA:
            ENA.autoscal(bench)
            ENA.selectrace(bench, action=['Set', 'para 1 calc 1'])
            data = ENA.sdata(bench)
            # print(Fore.YELLOW + "\rProgress: %.3f%% [%s]" %((i+1)/datasize*100, data), end='\r', flush=True)
            print(Fore.YELLOW + "\rProgress: %.3f%%" %
                  ((i + 1) / datasize * buffersize_1 * 100),
                  end='\r',
                  flush=True)

            # test for the last loop if there is
            if testeach:  # test each measure-loop:
                loopcount += [len(measure_loop_1)]
                loop_dur += [time() - prev]
                stage, prev = clocker(stage, prev)  # Marking time
                ENA.close(bench)
                if "opt" not in fluxbias.data:  # check if it is in optional-state
                    YOKO.close(yokog, False)
                yield loopcount, loop_dur

            else:
                if get_status("F_Response")['pause']:
                    break
                else:
                    yield data

        if not get_status("F_Response")['repeat']:
            set_status("F_Response", dict(pause=True))
            ENA.close(bench)
            if "opt" not in fluxbias.data:  # check if it is in optional-state
                YOKO.close(yokog, True)
            return
Example #5
0
def CW_Sweep(user,
             tag="",
             corder={},
             comment='',
             dayindex='',
             taskentry=0,
             resumepoint=0,
             instr=['PSG', 'YOKO', 'ENA'],
             testeach=False):
    '''Continuous Wave Sweeping:
	C-Order: Flux-Bias, XY-Frequency, XY-Power, S-Parameter, IF-Bandwidth, Frequency, Power
	'''
    sample = get_status("MSSN")['sample']
    # pushing pre-measurement parameters to settings:
    yield user, sample, tag, instr, corder, comment, dayindex, taskentry, testeach

    # User-defined Controlling-PARAMETER(s) ======================================================================================
    fluxbias = waveform(corder['Flux-Bias'])
    xyfreq = waveform(corder['XY-Frequency'])
    xypowa = waveform(corder['XY-Power'])
    Sparam = waveform(corder['S-Parameter'])
    ifb = waveform(corder['IF-Bandwidth'])
    freq = waveform(corder['Frequency'])
    # special treatment to power in this CW-Mode Sweeping:
    powa = waveform(corder['Power'])
    powa_repeat = powa.inner_repeat
    print("power sequence: %s, length: %s, inner-repeat-counts: %s" %
          (powa.command, powa.count, powa_repeat))
    # input("continue?")

    # Total data points:
    datasize = int(
        prod([
            waveform(x).count * waveform(x).inner_repeat
            for x in corder.values()
        ],
             dtype='uint64')) * 2  #data density of 2 due to IQ
    print("data size: %s" % datasize)

    # Pre-loop settings:
    # ENA:
    bench = ENA.Initiate(True)
    ENA.dataform(bench, action=['Set', 'REAL'])
    if powa_repeat == 1:
        # collect swept power-data every measure-loop
        ENA.sweep(bench, action=['Set', 'ON', powa.count])
        ENA.power(bench, action=['Set', '', powa.data[0], powa.data[-1]
                                 ])  # for power sweep (set pstart & pstop)
        buffersize_1 = powa.count * 2  # (buffer) data density of 2 due to IQ
    else:
        # collect repetitive power-data every measure-loop
        ENA.sweep(bench, action=['Set', 'ON', powa_repeat])
        buffersize_1 = powa_repeat * 2  # (buffer) data density of 2 due to IQ

    # YOKO:
    if "opt" not in fluxbias.data:  # check if it is in optional-state / serious-state
        yokog = YOKO.Initiate(current=True)  # pending option
        YOKO.output(yokog, 1)

    # PSG:
    if "opt" not in xyfreq.data:  # check if it is in optional-state / serious-state
        sogo = PSG0.Initiate()  # pending option
        PSG0.rfoutput(sogo, action=['Set', 1])

    # User-defined Measurement-FLOW ==============================================================================================
    if testeach:  # measure-time contribution from each measure-loop
        loopcount, loop_dur = [], []
        stage, prev = clocker(0)  # Marking starting point of time

    # Registerring parameter(s)-structure
    if powa_repeat == 1:
        cstructure = [
            fluxbias.count, xyfreq.count, xypowa.count, Sparam.count,
            ifb.count, freq.count, 1
        ]  # just single CW
    else:
        cstructure = [
            fluxbias.count, xyfreq.count, xypowa.count, Sparam.count,
            ifb.count, freq.count, powa.count
        ]  # take CW average by repeating

    # set previous parameters based on resumepoint:
    if resumepoint // buffersize_1 > 0:
        caddress = cdatasearch(resumepoint // buffersize_1, cstructure)
        # Only those involved in virtual for-loop need to be pre-set here:
        # Optionals:
        if "opt" not in fluxbias.data:  # check if it is in optional-state / serious-state
            YOKO.sweep(
                yokog,
                str(fluxbias.data[caddress[0]]),
                pulsewidth=77 * 1e-3,
                sweeprate=0.0007
            )  # A-mode: sweeprate=0.0007 A/s ; V-mode: sweeprate=0.07 V/s
        if "opt" not in xyfreq.data:  # check if it is in optional-state / serious-state
            PSG0.frequency(
                sogo, action=['Set',
                              str(xyfreq.data[caddress[1]]) + "GHz"])
            PSG0.power(sogo,
                       action=['Set',
                               str(xypowa.data[caddress[2]]) + "dBm"])
        # Basics:
        ENA.setrace(bench, Mparam=[Sparam.data[caddress[3]]], window='D1')
        ENA.ifbw(bench, action=['Set', ifb.data[caddress[4]]])
        ENA.cwfreq(bench, action=['Set', freq.data[caddress[5]] * 1e9])

    measure_loop_1 = range(
        resumepoint // buffersize_1, datasize //
        buffersize_1)  # saving chunck by chunck improves speed a lot!
    while True:
        for i in measure_loop_1:

            # determining the index-locations for each parameters, i.e. the address at any instance
            caddress = cdatasearch(i, cstructure)

            # setting each c-order (From High to Low level of execution):
            # ***************************************************************
            # Optionals:
            if not i % prod(cstructure[
                    1::]):  # virtual for-loop using exact-multiples condition
                if "opt" not in fluxbias.data:  # check if it is in optional-state
                    if testeach:  # adding instrument transition-time between set-values:
                        loopcount += [fluxbias.count]
                        if fluxbias.count > 1:
                            loop_dur += [
                                abs(fluxbias.data[0] - fluxbias.data[1]) / 0.2
                                + 35 * 1e-3
                            ]
                        else:
                            loop_dur += [0]
                        stage, prev = clocker(stage, prev)  # Marking time
                    else:
                        YOKO.sweep(
                            yokog,
                            str(fluxbias.data[caddress[0]]),
                            pulsewidth=77 * 1e-3,
                            sweeprate=0.0007
                        )  # A-mode: sweeprate=0.0007 A/s ; V-mode: sweeprate=0.07 V/s

            if not i % prod(cstructure[
                    2::]):  # virtual for-loop using exact-multiples condition
                if "opt" not in xyfreq.data:  # check if it is in optional-state
                    PSG0.frequency(
                        sogo,
                        action=['Set',
                                str(xyfreq.data[caddress[1]]) + "GHz"])

            if not i % prod(cstructure[
                    3::]):  # virtual for-loop using exact-multiples condition
                if "opt" not in xypowa.data:  # check if it is in optional-state
                    PSG0.power(
                        sogo,
                        action=['Set',
                                str(xypowa.data[caddress[2]]) + "dBm"])

            # Basics:
            if not i % prod(cstructure[
                    4::]):  # virtual for-loop using exact-multiples condition
                ENA.setrace(bench,
                            Mparam=[Sparam.data[caddress[3]]],
                            window='D1')

            if not i % prod(cstructure[
                    5::]):  # virtual for-loop using exact-multiples condition
                ENA.ifbw(bench, action=['Set', ifb.data[caddress[4]]])

            if not i % prod(cstructure[
                    6::]):  # virtual for-loop using exact-multiples condition
                ENA.cwfreq(bench, action=['Set', freq.data[caddress[5]] * 1e9])

            if powa_repeat > 1:
                ENA.power(bench,
                          action=[
                              'Set', '', powa.data[caddress[6]],
                              powa.data[caddress[6]]
                          ])  # same as the whole measure-loop

            # start sweeping:
            stat = ENA.sweep(bench)  #getting the estimated sweeping time
            print("Time-taken for this loop would be: %s (%spts)" %
                  (stat[1]['TIME'], stat[1]['POINTS']))
            print("Operation Complete: %s" % bool(ENA.measure(bench)))
            # adjusting display on ENA:
            ENA.autoscal(bench)
            ENA.selectrace(bench, action=['Set', 'para 1 calc 1'])
            data = ENA.sdata(bench)
            print(Fore.YELLOW + "\rProgress: %.3f%%" %
                  ((i + 1) / datasize * buffersize_1 * 100),
                  end='\r',
                  flush=True)

            # test for the last loop if there is
            if testeach:  # test each measure-loop:
                loopcount += [len(measure_loop_1)]
                loop_dur += [time() - prev]
                stage, prev = clocker(stage, prev)  # Marking time
                ENA.close(bench)
                if "opt" not in xyfreq.data:  # check if it is in optional-state
                    PSG0.close(sogo, False)
                if "opt" not in fluxbias.data:  # check if it is in optional-state
                    YOKO.close(yokog, False)
                yield loopcount, loop_dur

            else:
                if get_status("CW_Sweep")['pause']:
                    break
                else:
                    yield data

        if not get_status("CW_Sweep")['repeat']:
            set_status("CW_Sweep", dict(pause=True))
            ENA.close(bench)
            if "opt" not in xyfreq.data:  # check if it is in optional-state
                PSG0.rfoutput(sogo, action=['Set', 0])
                PSG0.close(sogo, False)
            if "opt" not in fluxbias.data:  # check if it is in optional-state
                YOKO.output(yokog, 0)
                YOKO.close(yokog, False)
            return
Example #6
0
def SQE_Pulse(user,
              tag="",
              corder={},
              comment='',
              dayindex='',
              taskentry=0,
              resumepoint=0,
              instr=['YOKO', 'PSGV', 'PSGA', 'AWG', 'VSA'],
              testeach=False):
    '''Time-domain Square-wave measurement:
    C-Structure: ['Flux-Bias', 
                    'Average', 'Pulse-Period', 'ADC-delay', 
                    'LO-Frequency', 'LO-Power', 'RO-Frequency', 'RO-Power', 'RO-ifLevel', 'RO-Pulse-Delay', 'RO-Pulse-Width', 
                    'XY-Frequency', 'XY-Power', 'XY-ifLevel', 'XY-Pulse-Delay', 'XY-Pulse-Width', 
                    'Sampling-Time'] (IQ-Bandwidth (250MHz or its HALFlings) + Acquisition-Time (dt must be multiples of 2ns))
    '''
    # Loading sample:
    sample = get_status("MSSN")[session['user_name']]['sample']
    # sample = get_status("MSSN")['abc']['sample'] # by-pass HTTP-request before interface is ready

    # pushing pre-measurement parameters to settings:
    yield user, sample, tag, instr, corder, comment, dayindex, taskentry, testeach

    # ***USER_DEFINED*** Controlling-PARAMETER(s) ======================================================================================
    structure = corder['C-Structure']
    fluxbias = waveform(corder['Flux-Bias'])
    averaging = waveform(corder['Average'])
    pperiod = waveform(corder['Pulse-Period'])
    adcdelay = waveform(corder['ADC-delay'])
    lofreq = waveform(corder['LO-Frequency'])
    lopowa = waveform(corder['LO-Power'])
    rofreq = waveform(corder['RO-Frequency'])
    ropowa = waveform(corder['RO-Power'])
    roiflevel = waveform(corder['RO-ifLevel'])
    ropdelay = waveform(corder['RO-Pulse-Delay'])
    ropwidth = waveform(corder['RO-Pulse-Width'])
    xyfreq = waveform(corder['XY-Frequency'])
    xypowa = waveform(corder['XY-Power'])
    xyiflevel = waveform(corder['XY-ifLevel'])
    xypdelay = waveform(corder['XY-Pulse-Delay'])
    xypwidth = waveform(corder['XY-Pulse-Width'])
    samptime = waveform(corder['Sampling-Time'])

    # Total data points:
    datasize = int(
        prod([waveform(corder[param]).count for param in structure],
             dtype='uint64')) * 2  #data density of 2 due to IQ
    print("data size: %s" % datasize)

    # Pre-loop settings:
    # Optionals:
    # YOKO:
    if "opt" not in fluxbias.data:  # check if it is in optional-state / serious-state
        yokog = YOKO.Initiate(current=True)  # pending option
        YOKO.output(yokog, 1)

    # PSGV:
    if "opt" not in xyfreq.data:  # check if it is in optional-state / serious-state
        sogo = PSG0.Initiate()  # pending option
        PSG0.rfoutput(sogo, action=['Set', 1])

    # Basics:
    # PSGA for LO:
    saga = PSG1.Initiate()  # pending option
    PSG1.rfoutput(saga, action=['Set', 1])

    # AWG for Control:
    awgsess = AWG.InitWithOptions()
    AWG.Abort_Gen(awgsess)
    AWG.ref_clock_source(awgsess,
                         action=['Set',
                                 int(1)])  # External 10MHz clock-reference
    AWG.predistortion_enabled(awgsess, action=['Set', True])
    AWG.output_mode_adv(awgsess, action=['Set',
                                         int(2)])  # Sequence output mode
    AWG.arb_sample_rate(awgsess,
                        action=['Set',
                                float(1250000000)])  # maximum sampling rate
    AWG.active_marker(awgsess, action=['Set', '1'])  # master
    AWG.marker_delay(awgsess, action=['Set', float(0)])
    AWG.marker_pulse_width(awgsess, action=['Set', float(1e-7)])
    AWG.marker_source(awgsess, action=['Set', int(7)])
    # PRESET Output:
    for ch in range(2):
        channel = str(ch + 1)
        AWG.output_config(awgsess, RepCap=channel, action=["Set",
                                                           0])  # Single-ended
        AWG.output_filter_bandwidth(awgsess, RepCap=channel, action=["Set", 0])
        AWG.arb_gain(awgsess, RepCap=channel, action=["Set", 0.5])
        AWG.output_impedance(awgsess, RepCap=channel, action=["Set", 50])
    # output settings:
    for ch in range(2):
        channel = str(ch + 1)
        AWG.output_enabled(awgsess, RepCap=channel, action=["Set",
                                                            int(1)])  # ON
        AWG.output_filter_enabled(awgsess,
                                  RepCap=channel,
                                  action=["Set", True])
        AWG.output_config(awgsess, RepCap=channel,
                          action=["Set", int(2)])  # Amplified 1:2
        AWG.output_filter_bandwidth(awgsess, RepCap=channel, action=["Set", 0])
        AWG.arb_gain(awgsess, RepCap=channel, action=["Set", 0.5])
        AWG.output_impedance(awgsess, RepCap=channel, action=["Set", 50])

    # VSA for Readout
    vsasess = VSA.InitWithOptions()

    # Buffer-size for lowest-bound data-collecting instrument:
    buffersize_1 = samptime.count * 2  #data density of 2 due to IQ
    print("Buffer-size: %s" % buffersize_1)

    # User-defined Measurement-FLOW ==============================================================================================
    if testeach:  # measure-time contribution from each measure-loop
        loopcount, loop_dur = [], []
        stage, prev = clocker(0)  # Marking starting point of time

    # Registerring parameter(s)-structure
    cstructure = [waveform(corder[param]).count for param in structure
                  ][:-1]  # The last one will become a buffer
    print('cstructure: %s' % cstructure)

    measure_loop_1 = range(
        resumepoint // buffersize_1, datasize //
        buffersize_1)  # saving chunck by chunck improves speed a lot!
    while True:
        for i in measure_loop_1:
            print(Back.BLUE + Fore.WHITE + 'measure %s/%s' %
                  (i, datasize // buffersize_1))
            # determining the index-locations for each parameters, i.e. the address at any instance
            caddress = cdatasearch(i, cstructure)

            # setting each c-order (From High to Low level of execution):
            # ***************************************************************
            for j in range(
                    len(cstructure) -
                    1):  # the last one will be run for every i (common sense!)
                if (
                        not i % prod(cstructure[j + 1::])
                ) or i == resumepoint // buffersize_1:  # virtual for-loop using exact-multiples condition
                    # print("entering %s-stage" %j)
                    # Optionals:
                    # YOKO
                    if structure[j] == 'Flux-Bias':
                        if "opt" not in fluxbias.data:  # check if it is in optional-state
                            if testeach:  # adding instrument transition-time between set-values:
                                loopcount += [fluxbias.count]
                                if fluxbias.count > 1:
                                    loop_dur += [
                                        abs(fluxbias.data[0] -
                                            fluxbias.data[1]) / 0.2 + 35 * 1e-3
                                    ]  # manually calculating time without really setting parameter on the instrument
                                else:
                                    loop_dur += [0]
                                stage, prev = clocker(stage,
                                                      prev)  # Marking time
                            else:
                                YOKO.sweep(
                                    yokog,
                                    str(fluxbias.data[caddress[structure.index(
                                        'Flux-Bias')]]),
                                    pulsewidth=77 * 1e-3,
                                    sweeprate=0.0007
                                )  # A-mode: sweeprate=0.0007 A/s ; V-mode: sweeprate=0.07 V/s

                    # PSG
                    if structure[j] == 'XY-Frequency':
                        if "opt" not in xyfreq.data:  # check if it is in optional-state
                            PSG0.frequency(
                                sogo,
                                action=[
                                    'Set',
                                    str(xyfreq.data[caddress[structure.index(
                                        'XY-Frequency')]]) + "GHz"
                                ])
                    if structure[j] == 'XY-Power':
                        if "opt" not in xypowa.data:  # check if it is in optional-state
                            PSG0.power(sogo,
                                       action=[
                                           'Set',
                                           str(xypowa.data[caddress[
                                               structure.index('XY-Power')]]) +
                                           "dBm"
                                       ])
                    if structure[j] == 'RO-Frequency':
                        if "opt" not in rofreq.data:  # check if it is in optional-state
                            PSG1.frequency(
                                saga,
                                action=[
                                    'Set',
                                    str(rofreq.data[caddress[structure.index(
                                        'RO-Frequency')]]) + "GHz"
                                ])
                    if structure[j] == 'RO-Power':
                        if "opt" not in ropowa.data:  # check if it is in optional-state
                            PSG1.power(saga,
                                       action=[
                                           'Set',
                                           str(ropowa.data[caddress[
                                               structure.index('RO-Power')]]) +
                                           "dBm"
                                       ])

            # AWG (Every-loop)
            if "opt" not in pperiod.data:  # check if it is in optional-state
                AWG.Clear_ArbMemory(awgsess)
                WAVE = []

                # construct waveform:
                ifperiod = pperiod.data[caddress[structure.index(
                    'Pulse-Period')]]
                ifscale = float(
                    xyiflevel.data[caddress[structure.index('XY-ifLevel')]]
                ), float(
                    roiflevel.data[caddress[structure.index('RO-ifLevel')]])

                if "lockxypwd" in str(ropdelay.data[0]):
                    if '+' in str(ropdelay.data[0]):
                        rooffset = float(ropdelay.data[0].split('+')[1])
                    else:
                        rooffset = 0  # default value
                    ifdelay = float(xypdelay.data[caddress[structure.index(
                        'XY-Pulse-Delay')]]), float(xypwidth.data[caddress[
                            structure.index('XY-Pulse-Width')]]) + rooffset
                    print("RO-Pulse Delays behind XY-Pulse for %sns" %
                          (ifdelay[1] - ifdelay[0]))
                else:
                    ifdelay = float(xypdelay.data[caddress[structure.index(
                        'XY-Pulse-Delay')]]), float(ropdelay.data[caddress[
                            structure.index('RO-Pulse-Delay')]])

                ifontime = float(
                    xypwidth.data[caddress[structure.index('XY-Pulse-Width')]]
                ), float(
                    ropwidth.data[caddress[structure.index('RO-Pulse-Width')]])
                for ch in range(2):
                    channel = str(ch + 1)
                    wavefom = squarewave(ifperiod, ifontime[ch], ifdelay[ch],
                                         ifscale[ch])  # in ns
                    stat, wave = AWG.CreateArbWaveform(awgsess, wavefom)
                    print('Waveform channel %s: %s <%s>' %
                          (channel, wave, status_code(stat)))
                    WAVE.append(wave)
                # Building Sequences:
                for ch in range(2):
                    channel = str(ch + 1)
                    status, seqhandl = AWG.CreateArbSequence(
                        awgsess, [WAVE[ch]], [1]
                    )  # loop# canbe >1 if longer sequence is needed in the future!
                    # print('Sequence channel %s: %s <%s>' %(channel, seqhandl, status_code(status)))
                    # Channel Assignment:
                    stat = AWG.arb_sequence_handle(awgsess,
                                                   RepCap=channel,
                                                   action=["Set", seqhandl])
                    # print('Sequence channel %s embeded: %s <%s>' %(channel, stat[1], status_code(stat[0])))
                # Trigger Settings:
                for ch in range(2):
                    channel = str(ch + 1)
                    AWG.operation_mode(awgsess,
                                       RepCap=channel,
                                       action=["Set", 0])
                    AWG.trigger_source_adv(awgsess,
                                           RepCap=channel,
                                           action=["Set", 0])
                AWG.Init_Gen(awgsess)
                AWG.Send_Pulse(awgsess, 1)

            # Basic / Buffer:
            # VSA (Every-loop)
            VSA.acquisition_time(vsasess,
                                 action=['Set',
                                         float(samptime.count * 2e-9)
                                         ])  # minimum time resolution
            VSA.preselector_enabled(vsasess, action=[
                'Set', False
            ])  # disable preselector to allow the highest bandwidth of 250MHz

            if "lockro" in str(lofreq.data[0]):
                if '+' in str(lofreq.data[0]):
                    lof_offset = float(lofreq.data[0].split('+')[1])
                elif '-' in str(lofreq.data[0]):
                    lof_offset = -float(lofreq.data[0].split('-')[1])
                else:
                    lof_offset = 0  # default value
                VSA.frequency(vsasess,
                              action=[
                                  'Set',
                                  float(rofreq.data[caddress[structure.index(
                                      'RO-Frequency')]]) * 1e9 + lof_offset
                              ])  # freq offset / correction in Hz
                print("Locking on RO at %sGHz" %
                      (VSA.frequency(vsasess)[1] / 1e9))
            else:
                VSA.frequency(vsasess,
                              action=[
                                  'Set',
                                  float(lofreq.data[caddress[structure.index(
                                      'LO-Frequency')]]) * 1e9
                              ])

            VSA.power(
                vsasess,
                action=[
                    'Set',
                    float(lopowa.data[caddress[structure.index('LO-Power')]])
                ])
            VSA.bandwidth(
                vsasess, action=['Set', 250e6]
            )  # maximum LO bandwidth of 250MHz (500MHz Sampling-rate gives 2ns of time resolution)
            VSA.trigger_source(vsasess,
                               action=['Set',
                                       int(1)])  # External Trigger (slave)

            # Delay for Readout
            if "lockxypwd" in str(ropdelay.data[0]):
                # trigger-delay sync with xy-pulse-width for Rabi measurement:
                VSA.trigger_delay(vsasess, action=['Set', float(adcdelay.data[caddress[structure.index('ADC-delay')]]) + \
                    float(xypwidth.data[caddress[structure.index('XY-Pulse-Width')]])*1e-9 + rooffset*1e-9])
                print("ACQ delays with XY-Pulse for %sns" %
                      int(VSA.trigger_delay(vsasess)[1] / 1e-9))
            elif "lockropdelay" in str(adcdelay.data[0]):
                # trigger-delay sync with ro-pulse-delay for T1 measurement:
                VSA.trigger_delay(
                    vsasess,
                    action=[
                        'Set',
                        float(ropdelay.data[caddress[structure.index(
                            'RO-Pulse-Delay')]]) * 1e-9
                    ])
                print("ACQ delays with RO-Pulse for %sns" %
                      int(VSA.trigger_delay(vsasess)[1] / 1e-9))
            else:
                VSA.trigger_delay(vsasess,
                                  action=[
                                      'Set',
                                      float(adcdelay.data[caddress[
                                          structure.index('ADC-delay')]])
                                  ])

            VSA.external_trigger_level(vsasess, action=['Set', float(0.3)])
            VSA.external_trigger_slope(vsasess,
                                       action=['Set',
                                               int(1)])  # Positive slope
            VSA.trigger_timeout(vsasess, action=['Set',
                                                 int(1000)])  # 1s of timeout
            stat = VSA.Init_Measure(vsasess)  # Initiate Measurement

            # Start Quantum machine:
            # Start Averaging Loop:
            avenum = int(averaging.data[caddress[structure.index('Average')]])
            vsasn = VSA.samples_number(vsasess)[1]
            iqdata = zeros((avenum, 2 * vsasn))
            for ave in range(avenum):
                VSA.Arm_Measure(vsasess)
                gd = VSA.Get_Data(vsasess, 2 * vsasn)
                iqdata[ave, :] = array(gd[1]['ComplexData'])
            iqdata = mean(iqdata, axis=0)
            print("Operation Complete")
            print(Fore.YELLOW + "\rProgress: %.3f%%" %
                  ((i + 1) / datasize * buffersize_1 * 100),
                  end='\r',
                  flush=True)

            # test for the last loop if there is
            if testeach:  # test each measure-loop:
                loopcount += [len(measure_loop_1)]
                loop_dur += [time() - prev]
                stage, prev = clocker(stage, prev)  # Marking time
                VSA.close(vsasess)
                if "opt" not in pperiod.data:  # check if it is in optional-state
                    AWG.close(awgsess)
                if "opt" not in xyfreq.data:  # check if it is in optional-state
                    PSG0.close(sogo, False)
                if "opt" not in rofreq.data:  # check if it is in optional-state
                    PSG1.close(saga, False)
                if "opt" not in fluxbias.data:  # check if it is in optional-state
                    YOKO.close(yokog, False)
                yield loopcount, loop_dur

            else:
                if get_status("SQE_Pulse")['pause']:
                    break
                else:
                    yield list(iqdata)

        if not get_status("SQE_Pulse")['repeat']:
            set_status("SQE_Pulse", dict(pause=True))
            VSA.close(vsasess)
            if "opt" not in pperiod.data:  # check if it is in optional-state
                AWG.Abort_Gen(awgsess)
                AWG.close(awgsess)
            if "opt" not in xyfreq.data:  # check if it is in optional-state
                PSG0.rfoutput(sogo, action=['Set', 0])
                PSG0.close(sogo, False)
            if "opt" not in rofreq.data:  # check if it is in optional-state
                PSG1.rfoutput(saga, action=['Set', 0])
                PSG1.close(saga, False)
            if "opt" not in fluxbias.data:  # check if it is in optional-state
                YOKO.output(yokog, 0)
                YOKO.close(yokog, False)
            return
Example #7
0
def dc_yokogawa_onoff():
    global yokog
    YOKO.output(yokog, 1)
    YOKO.output(yokog, 0)
    return jsonify()