Example #1
0
def draw_circle_x_y(draw,
                    r,
                    center=np.array([1, 1]),
                    radius=1,
                    start=np.array([0.0, 1.0, 0.0]),
                    arcExtent=180.0,
                    rgba=(102, 255, 51),
                    width=5,
                    shift=np.array([1000, 1000, 0]),
                    scale=200):
    """
    Draws a circle in the x-y plane.
    args:
        center : The center of the circle in original coordinate system.
        radius : The radius of the circle in original coordinate system.
    """
    start = start * radius
    if len(center) == 2:
        center = np.concatenate((center, np.array([0])), axis=0)
    center = np.dot(r, center) * scale
    shift1 = shift[:3] + center
    pt1 = np.dot(r, start)
    ##
    theta = np.pi * 1.0 / 180.0
    rot = general_rotation(np.dot(r, np.array([0, 0, 1])), theta)
    for j in range(0, int(arcExtent)):
        pt2 = np.dot(rot, pt1)
        draw.line((pt1[0] * scale + shift1[0], pt1[1] * scale + shift1[1],
                   pt2[0] * scale + shift1[0], pt2[1] * scale + shift1[1]),
                  fill=rgba,
                  width=width)
        pt1 = pt2
Example #2
0
def generalized_arc(draw,
                    r,
                    center,
                    vec,
                    point,
                    radius,
                    prcnt=1,
                    rgba=(255, 0, 0, 100),
                    scale=200,
                    shift=np.array([1000, 1000, 0]),
                    width=5):
    """
    Same as generalized_circle, but instead of drawing the whole circle, only draws a portion of it.
    """
    pt1 = np.dot(r, point)
    vec = vec / sum(vec**2)**0.5
    theta = np.pi * 2.0 / 80.0 * prcnt
    r1 = general_rotation(np.dot(r, vec), theta)
    for j in range(0, 80):
        pt2 = np.dot(r1, pt1)
        #draw.ellipse( (pt2[0]-2,pt2[1]-2,pt2[0]+2,pt2[1]+2), fill = (68,193,195), outline = (68,193,195))
        draw.line((pt1[0] * scale + shift[0], pt1[1] * scale + shift[1],
                   pt2[0] * scale + shift[0], pt2[1] * scale + shift[1]),
                  fill=rgba,
                  width=width)
        pt1 = pt2
Example #3
0
def generalized_circle(draw,
                       center,
                       vec,
                       radius,
                       rotation_matrix,
                       scale=100,
                       shift=np.array([1000, 1000, 0]),
                       rgba=(255, 122, 0, 100),
                       width=5):
    """
    Draws a circle as seen from a given angle.
    args:
        draw: The draw object associated with image we are plotting on. Used to make lines, ellipses and planes on it.
        center: The center of the circle. Provided in original coordinates (see file header). Example: [0,0,0]
        vec: The vector that passes through the center and is perpendicular to the plane of the circle.
             Provided in original coordinates (see file header). Example: np.array([0,0,1])
        radius: the radius of the circle.
        scale: The amount by which the whole plot is to be scaled.
        shift: The origin corresponds to this pixel on the images (first two coordinates).
        rgba: The color of the line.
    """
    # Make the vec a unit vector by dividing it by its length
    vec = vec / sum(vec**2)**0.5
    if vec[0] == 0 and vec[1] == 0:
        # Let's say the vec is [0, 0, z]. [0, 0, z]*[1, 1, 0] will be always
        # [0, 0, 0].
        orthogonal_vec = np.array([1, 1, 0])
    else:
        # For example, the orthogonal vector of [2, 1, 0] is [-1, 2, 0].
        orthogonal_vec = np.array([vec[1], -vec[0], 0])
    # Normalizing
    orthogonal_vec = orthogonal_vec / sum(orthogonal_vec**2)**0.5
    # We are drawing the circle from the rotation_starting_point
    rotation_starting_point = center + radius * orthogonal_vec
    rotation_starting_point = np.dot(rotation_matrix, rotation_starting_point)
    # We complete drawing the circle with 80 steps
    theta = np.pi * 2.0 / 80.0
    # runner is a 3-dimensional rotation matrix that rotates by incremental
    # amount.
    runner = general_rotation(np.dot(rotation_matrix, vec), theta)
    for j in range(0, 80):
        rotation_ending_point = np.dot(runner, rotation_starting_point)
        draw.line((rotation_starting_point[0] * scale + shift[0],
                   rotation_starting_point[1] * scale + shift[1],
                   rotation_ending_point[0] * scale + shift[0],
                   rotation_ending_point[1] * scale + shift[1]),
                  fill=rgba,
                  width=width)
        rotation_starting_point = rotation_ending_point
Example #4
0
def project_circle_on_plane(draw,
                            r,
                            center=np.array([1, 1]),
                            radius=1,
                            plane=np.array([4.5, 4.5, 4.5]),
                            start=np.array([0.0, 1.0, 0.0]),
                            arcExtent=180.0,
                            shift=np.array([1000, 1000, 0]),
                            scale=200):
    """
    Draws the projection of a circle onto a plane.
    args:
        center : The center of the circle in original coordinate system.
        radius : The radius of the circle in original coordinate system.
        plane : The intercepts of the plane on the x, y and z axes.
        start : The point at which to start drawing the arc. It should be ensured that this point lies on the circle.
        arcEctent : The angle the arc is to make.
    """
    [a, b, c] = plane
    center = np.concatenate((center, np.array([0])), axis=0)
    center1 = np.dot(r, center) * scale
    shift1 = shift[:3] + center1
    pt1 = np.dot(r, start)
    [x, y] = np.array([0.0, radius])
    z = c * (1 - x / a - y / b)
    pt1Up = np.dot(r, np.array([x, y, z]))
    ##
    theta = np.pi * 1.0 / 180
    rot = general_rotation(np.dot(r, np.array([0, 0, 1])), theta)
    for j in range(0, arcExtent):
        pt2 = np.dot(rot, pt1)
        pt2Orig = np.dot(np.transpose(r), pt2) + center
        [x, y] = pt2Orig[:2]
        z = c * (1 - x / a - y / b)
        pt2Up = np.dot(r, np.array([x, y, z]))
        if sum((pt1Up - pt2Up)**2) < 0.1:
            draw.line(
                (pt1Up[0] * scale + shift[0], pt1Up[1] * scale + shift[1],
                 pt2Up[0] * scale + shift[0], pt2Up[1] * scale + shift[1]),
                fill=(102, 102, 255, 100),
                width=5)
            #draw.line((pt1Up[0]*scale + shift[0], pt1Up[1]*scale+shift[1], pt2Up[0]*scale+shift[0], pt2Up[1]*scale+shift[1]), fill=(102,255,51,100), width=5)
        # The vertical lines clibing up.
        draw.line((pt2[0] * scale + shift1[0], pt2[1] * scale + shift1[1],
                   pt2Up[0] * scale + shift[0], pt2Up[1] * scale + shift[1]),
                  fill=(51, 102, 255, 60),
                  width=5)
        pt1 = pt2
        pt1Up = pt2Up
Example #5
0
def project_circle_on_surface(draw,
                              r,
                              fn,
                              center=np.array([0, 0]),
                              radius=0.75,
                              start=np.array([0.0, 0.75, 0.0]),
                              arcExtent=180.0,
                              shift=np.array([1000, 1000, 0]),
                              scale=300):
    """
    Draws the projection of a circle onto an arbitrary surface defined by the function, fn.
    """
    center = np.concatenate((center, np.array([0])), axis=0)
    center1 = np.dot(r, center) * scale
    shift1 = shift[:3] + center1
    pt1 = np.dot(r, start)
    [x, y] = np.array([0.0, radius])
    z = fn(np.matrix([x, y]))
    pt1Up = np.dot(r, np.array([x, y, z]))
    theta = np.pi * 2.0 / 180
    rot = general_rotation(np.dot(r, np.array([0, 0, 1])), theta)
    for j in np.arange(0, arcExtent):
        pt2 = np.dot(rot, pt1)
        pt2Orig = np.dot(np.transpose(r), pt2) + center
        [x, y] = pt2Orig[:2]
        z = fn(np.matrix([x, y]))
        pt2Up = np.dot(r, np.array([x, y, z]))
        if sum((pt1Up - pt2Up)**2) < 0.1:
            draw.line(
                (pt1Up[0] * scale + shift[0], pt1Up[1] * scale + shift[1],
                 pt2Up[0] * scale + shift[0], pt2Up[1] * scale + shift[1]),
                fill=(102, 102, 255, 100),
                width=7)
        # The vertical lines clibing up.
        draw.line((pt2[0] * scale + shift1[0], pt2[1] * scale + shift1[1],
                   pt2Up[0] * scale + shift[0], pt2Up[1] * scale + shift[1]),
                  fill=(51, 102, 255, 100),
                  width=8)
        pt1 = pt2
        pt1Up = pt2Up
Example #6
0
def generalized_circle2(draw,
                        center,
                        vec,
                        radius,
                        r,
                        scale=200,
                        shift=np.array([1000, 1000, 0]),
                        rgba=(255, 20, 147, 250),
                        width=5):
    """
    Basically the same as generalized_circle but the center and vec are expected in the rotated coordinates (image coordinates).
    args:
        draw: The draw object associated with image we are plotting on. Used to make lines, ellipses and planes on it.
        center: The center of the circle. Provided in image coordinates (see file header).
        vec: The vector that passes through the center and is perpendicular to the plane of the circle. Provided in image coordinates (see file header).
        radius: the radius of the circle.
        scale: The amount by which the whole plot is to be scaled.
        shift: The origin corresponds to this pixel on the images (first two coordinates).
        rgba: The color of the line.
    """
    vec = vec / sum(vec**2)**0.5
    if vec[0] == 0 and vec[1] == 0:
        orthogonal_vec = np.array([1, 1, 0])
    else:
        orthogonal_vec = np.array([vec[0], -vec[1], 0])
    orthogonal_vec = orthogonal_vec / sum(orthogonal_vec**2)**0.5
    pt1 = np.dot(r, center) + radius * np.dot(r, orthogonal_vec)
    # Make the parameter 30000 smaller for grainy drawing
    theta = np.pi * 2.0 / 30.0
    r1 = general_rotation(np.dot(r, vec), theta)
    for j in range(0, 30):
        pt2 = np.dot(r1, pt1)
        draw.line((pt1[0] * scale + shift[0], pt1[1] * scale + shift[1],
                   pt2[0] * scale + shift[0], pt2[1] * scale + shift[1]),
                  fill=rgba,
                  width=width)
        pt1 = pt2