def test_distance_generic_euclid():
    """Test euclidean distance for generic function"""
    A = 2*np.eye(3)
    B = 2*np.eye(3)
    assert_equal(distance(A, B, metric='euclid'), distance_euclid(A, B))
def test_distance_euclid():
    """Test euclidean distance"""
    A = 2*np.eye(3)
    B = 2*np.eye(3)
    assert_equal(distance_euclid(A, B), 0)
Example #3
0
def test_distance_generic_euclid():
    """Test euclidean distance for generic function"""
    A = 2 * np.eye(3)
    B = 2 * np.eye(3)
    assert_equal(distance(A, B, metric='euclid'), distance_euclid(A, B))
Example #4
0
def test_distance_euclid():
    """Test euclidean distance"""
    A = 2 * np.eye(3)
    B = 2 * np.eye(3)
    assert_equal(distance_euclid(A, B), 0)
cov_u3 = rotMatrix.dot(LambdaMatrix.dot(rotMatrix.transpose()))
LambdaMatrix = _draw_eigenvalues(dim=args.dim, b=args.b, distribution="unif", overlap=args.overlap_eigenvalues)
rotMatrix = _draw_rotation_matrix(args.dim)
cov_u4 = rotMatrix.dot(LambdaMatrix.dot(rotMatrix.transpose()))

covs_u = [cov_u1, cov_u2, cov_u3, cov_u4]
est_covsu = []
eucl_mean = []
riemann_mean = []
for i, cu in enumerate(covs_u):
    our, eucl, riemann = _draw_subject_specific_and_estimate(cu, args.dim,
                                                             args.vnum, args.outliers,
                                                             args.b, args.show_corrs,
                                                             args.repeat_one, i)
    est_covsu.append(our)
    print("Estimation " + str(i) + " : Euclidean distance between our estimator and ground thruth is : " + str(distance_euclid(our, cu)))
    eucl_mean.append(eucl)
    print("Estimation " + str(i) + " : Euclidean distance between euclidean mean and ground thruth is : " + str(distance_euclid(eucl, cu)))
    riemann_mean.append(riemann)
    print("Estimation " + str(i) + " : Euclidean distance between riemannian mean and ground thruth is : " + str(distance_euclid(riemann, cu)))


if (args.visual):
    f, axarr = plt.subplots(4, 4, figsize=(11, 5))
    for i, cu in enumerate(covs_u):
        # -----covariances---#
        margins = 1
        upper_bound = cu.max()+margins
        lower_bound = cu.min()-margins
        middle = (upper_bound+lower_bound)*0.5
        im = axarr[i, 0].pcolormesh(np.flipud(cu.T),
def test_distance_euclid():
    """Test euclidean distance"""
    A = 2 * np.eye(3)
    B = 2 * np.eye(3)
    assert distance_euclid(A, B) == 0