Example #1
0
def conditional_spline(input_dim,
                       context_dim,
                       hidden_dims=None,
                       count_bins=8,
                       bound=3.0,
                       order='linear'):
    """
    A helper function to create a
    :class:`~pyro.distributions.transforms.ConditionalSpline` object that takes care
    of constructing a dense network with the correct input/output dimensions.

    :param input_dim: Dimension of input variable
    :type input_dim: int
    :param context_dim: Dimension of context variable
    :type context_dim: int
    :param hidden_dims: The desired hidden dimensions of the dense network. Defaults
        to using [input_dim * 10, input_dim * 10]
    :type hidden_dims: list[int]
    :param count_bins: The number of segments comprising the spline.
    :type count_bins: int
    :param bound: The quantity :math:`K` determining the bounding box,
        :math:`[-K,K]\times[-K,K]`, of the spline.
    :type bound: float
    :param order: One of ['linear', 'quadratic'] specifying the order of the spline.
    :type order: string

    """

    if hidden_dims is None:
        hidden_dims = [input_dim * 10, input_dim * 10]

    if order == 'linear':
        nn = DenseNN(context_dim,
                     hidden_dims,
                     param_dims=[
                         input_dim * count_bins, input_dim * count_bins,
                         input_dim * (count_bins - 1), input_dim * count_bins
                     ])
    elif order == 'quadratic':
        nn = DenseNN(context_dim,
                     hidden_dims,
                     param_dims=[
                         input_dim * count_bins, input_dim * count_bins,
                         input_dim * (count_bins - 1)
                     ])

    else:
        raise ValueError(
            "Keyword argument 'order' must be one of ['linear', 'quadratic'], but '{}' was found!"
            .format(order))

    return ConditionalSpline(nn,
                             input_dim,
                             count_bins,
                             bound=bound,
                             order=order)
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        nonlinearity = Swish() if self.use_swish else nn.LeakyReLU(0.1)

        brain_volume_net = DenseNN(2, [8, 16],
                                   param_dims=[1, 1],
                                   nonlinearity=nonlinearity)
        self.brain_volume_flow_components = ConditionalAffineTransform(
            context_nn=brain_volume_net, event_dim=0)
        self.brain_volume_flow_transforms = [
            self.brain_volume_flow_components,
            self.brain_volume_flow_constraint_transforms
        ]

        ventricle_volume_net = DenseNN(3, [12, 20],
                                       param_dims=[1, 1],
                                       nonlinearity=nonlinearity)
        self.ventricle_volume_flow_components = ConditionalAffineTransform(
            context_nn=ventricle_volume_net, event_dim=0)
        self.ventricle_volume_flow_transforms = [
            self.ventricle_volume_flow_components,
            self.ventricle_volume_flow_constraint_transforms
        ]

        lesion_volume_net = DenseNN(4, [16, 24],
                                    param_dims=[1, 1],
                                    nonlinearity=nonlinearity)
        self.lesion_volume_flow_components = ConditionalAffineTransform(
            context_nn=lesion_volume_net, event_dim=0)
        self.lesion_volume_flow_transforms = [
            self.lesion_volume_flow_components,
            self.lesion_volume_flow_constraint_transforms
        ]

        duration_net = DenseNN(2, [8, 16],
                               param_dims=[1, 1],
                               nonlinearity=nonlinearity)
        self.duration_flow_components = ConditionalAffineTransform(
            context_nn=duration_net, event_dim=0)
        self.duration_flow_transforms = [
            self.duration_flow_components,
            self.duration_flow_constraint_transforms
        ]

        edss_net = DenseNN(2, [8, 16],
                           param_dims=[1, 1],
                           nonlinearity=nonlinearity)
        self.edss_flow_components = ConditionalAffineTransform(
            context_nn=edss_net, event_dim=0)
        self.edss_flow_transforms = [
            self.edss_flow_components, self.edss_flow_constraint_transforms
        ]
Example #3
0
def conditional_matrix_exponential(input_dim, context_dim, hidden_dims=None, iterations=8, normalization='none',
                                   bound=None):
    """
    A helper function to create a
    :class:`~pyro.distributions.transforms.ConditionalMatrixExponential` object for
    consistency with other helpers.

    :param input_dim: Dimension of input variable
    :type input_dim: int
    :param context_dim: Dimension of context variable
    :type context_dim: int
    :param hidden_dims: The desired hidden dimensions of the dense network. Defaults
        to using [input_dim * 10, input_dim * 10]
    :type hidden_dims: list[int]
    :param iterations: the number of terms to use in the truncated power series that
        approximates matrix exponentiation.
    :type iterations: int
    :param normalization: One of `['none', 'weight', 'spectral']` normalization that
        selects what type of normalization to apply to the weight matrix. `weight`
        corresponds to weight normalization (Salimans and Kingma, 2016) and
        `spectral` to spectral normalization (Miyato et al, 2018).
    :type normalization: string
    :param bound: a bound on either the weight or spectral norm, when either of
        those two types of regularization are chosen by the `normalization`
        argument. A lower value for this results in fewer required terms of the
        truncated power series to closely approximate the exact value of the matrix
        exponential.
    :type bound: float

    """

    if hidden_dims is None:
        hidden_dims = [input_dim * 10, input_dim * 10]
    nn = DenseNN(context_dim, hidden_dims, param_dims=[input_dim * input_dim])
    return ConditionalMatrixExponential(input_dim, nn, iterations=iterations, normalization=normalization, bound=bound)
Example #4
0
def spline_coupling(input_dim, split_dim=None, hidden_dims=None, count_bins=8, bound=3.0):
    """
    A helper function to create a
    :class:`~pyro.distributions.transforms.SplineCoupling` object for consistency
    with other helpers.

    :param input_dim: Dimension of input variable
    :type input_dim: int

    """

    if split_dim is None:
        split_dim = input_dim // 2

    if hidden_dims is None:
        hidden_dims = [input_dim * 10, input_dim * 10]

    nn = DenseNN(split_dim,
                 hidden_dims,
                 param_dims=[(input_dim - split_dim) * count_bins,
                             (input_dim - split_dim) * count_bins,
                             (input_dim - split_dim) * (count_bins - 1),
                             (input_dim - split_dim) * count_bins])

    return SplineCoupling(input_dim, split_dim, nn, count_bins, bound)
Example #5
0
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        # Flow for modelling t Gamma
        self.thickness_flow_components = ComposeTransformModule([Spline(1)])
        self.thickness_flow_constraint_transforms = ComposeTransform(
            [self.thickness_flow_lognorm,
             ExpTransform()])
        self.thickness_flow_transforms = ComposeTransform([
            self.thickness_flow_components,
            self.thickness_flow_constraint_transforms
        ])

        # affine flow for s normal
        intensity_net = DenseNN(1, [1],
                                param_dims=[1, 1],
                                nonlinearity=torch.nn.Identity())
        self.intensity_flow_components = ConditionalAffineTransform(
            context_nn=intensity_net, event_dim=0)
        self.intensity_flow_constraint_transforms = ComposeTransform(
            [SigmoidTransform(), self.intensity_flow_norm])
        self.intensity_flow_transforms = [
            self.intensity_flow_components,
            self.intensity_flow_constraint_transforms
        ]
Example #6
0
def conditional_affine_coupling2(input_dim,
                                 context_dim,
                                 hidden_dims=None,
                                 split_dim=None,
                                 rich_context_dim=None,
                                 dropout=None,
                                 **kwargs):
    if split_dim is None:
        split_dim = input_dim // 2
    if hidden_dims is None:
        hidden_dims = [10 * input_dim]

    if rich_context_dim is None:
        rich_context_dim = 5 * context_dim

    if dropout is None:
        hypernet = DenseNN(split_dim + rich_context_dim, hidden_dims,
                           [input_dim - split_dim, input_dim - split_dim])
    else:
        hypernet = DropoutDenseNN(
            input_dim=split_dim + rich_context_dim,
            hidden_dims=hidden_dims,
            dropout=dropout,
            param_dims=[input_dim - split_dim, input_dim - split_dim])
    return ConditionalAffineCoupling2(split_dim, hypernet)
Example #7
0
def init_spline_coupling(dim: int, device: str = "cpu", **kwargs):
    """Intitialize a spline coupling transform, by providing necessary args and
    kwargs."""
    assert dim > 1, "In 1d this would be equivalent to affine flows, use them."
    split_dim = kwargs.get("split_dim", dim // 2)
    hidden_dims = kwargs.pop("hidden_dims", [5 * dim + 30, 5 * dim + 30])
    nonlinearity = kwargs.pop("nonlinearity", nn.ReLU())
    count_bins = kwargs.get("count_bins", 15)
    order = kwargs.get("order", "linear")
    bound = kwargs.get("bound", 10)
    if order == "linear":
        param_dims = [
            (dim - split_dim) * count_bins,
            (dim - split_dim) * count_bins,
            (dim - split_dim) * (count_bins - 1),
            (dim - split_dim) * count_bins,
        ]
    else:
        param_dims = [
            (dim - split_dim) * count_bins,
            (dim - split_dim) * count_bins,
            (dim - split_dim) * (count_bins - 1),
        ]
    neural_net = DenseNN(split_dim,
                         hidden_dims,
                         param_dims,
                         nonlinearity=nonlinearity).to(device)
    return [dim, split_dim, neural_net], {
        "count_bins": count_bins,
        "bound": bound,
        "order": order,
    }
Example #8
0
def affine_coupling(input_dim, hidden_dims=None, split_dim=None, **kwargs):
    """
    A helper function to create an :class:`~pyro.distributions.transforms.AffineCoupling` object that takes care of
    constructing a dense network with the correct input/output dimensions.

    :param input_dim: Dimension of input variable
    :type input_dim: int
    :param hidden_dims: The desired hidden dimensions of the dense network. Defaults
        to using [10*input_dim]
    :type hidden_dims: list[int]
    :param split_dim: The dimension to split the input on for the coupling transform. Defaults
        to using input_dim // 2
    :type split_dim: int
    :param log_scale_min_clip: The minimum value for clipping the log(scale) from the autoregressive NN
    :type log_scale_min_clip: float
    :param log_scale_max_clip: The maximum value for clipping the log(scale) from the autoregressive NN
    :type log_scale_max_clip: float

    """
    if split_dim is None:
        split_dim = input_dim // 2
    if hidden_dims is None:
        hidden_dims = [10 * input_dim]
    hypernet = DenseNN(split_dim, hidden_dims, [input_dim - split_dim, input_dim - split_dim])
    return AffineCoupling(split_dim, hypernet, **kwargs)
def conditional_affine_coupling(input_dim, context_dim, hidden_dims=None, split_dim=None,
                                rich_context_dim=None, context_hidden_dims=None, **kwargs):
    if split_dim is None:
        split_dim = input_dim // 2
    if hidden_dims is None:
        hidden_dims = [10 * input_dim]

    if rich_context_dim is None:
        rich_context_dim = 5 * context_dim
    if context_hidden_dims is None:
        context_hidden_dims = [10 * context_dim]

    hypernet = DenseNN(split_dim + rich_context_dim, hidden_dims, [input_dim - split_dim, input_dim - split_dim])
    condinet = DenseNN(context_dim, context_hidden_dims, [rich_context_dim])

    return ConditionalAffineCoupling(split_dim, hypernet, condinet)
Example #10
0
    def __init__(self, use_affine_ex: bool = True, **kwargs):
        super().__init__(**kwargs)
        self.use_affine_ex = use_affine_ex

        # decoder parts

        # Flow for modelling t Gamma
        self.thickness_flow_components = ComposeTransformModule([Spline(1)])
        self.thickness_flow_constraint_transforms = ComposeTransform(
            [self.thickness_flow_lognorm,
             ExpTransform()])
        self.thickness_flow_transforms = ComposeTransform([
            self.thickness_flow_components,
            self.thickness_flow_constraint_transforms
        ])

        # affine flow for s normal
        intensity_net = DenseNN(1, [1],
                                param_dims=[1, 1],
                                nonlinearity=torch.nn.Identity())
        self.intensity_flow_components = ConditionalAffineTransform(
            context_nn=intensity_net, event_dim=0)
        self.intensity_flow_constraint_transforms = ComposeTransform(
            [SigmoidTransform(), self.intensity_flow_norm])
        self.intensity_flow_transforms = [
            self.intensity_flow_components,
            self.intensity_flow_constraint_transforms
        ]
        # build flow as s_affine_w * t * e_s + b -> depends on t though

        # realnvp or so for x
        self._build_image_flow()
Example #11
0
def conditional_householder(input_dim,
                            context_dim,
                            hidden_dims=None,
                            count_transforms=1):
    """
    A helper function to create a
    :class:`~pyro.distributions.transforms.ConditionalHouseholder` object that takes
    care of constructing a dense network with the correct input/output dimensions.

    :param input_dim: Dimension of input variable
    :type input_dim: int
    :param context_dim: Dimension of context variable
    :type context_dim: int
    :param hidden_dims: The desired hidden dimensions of the dense network. Defaults
        to using [input_dim * 10, input_dim * 10]
    :type hidden_dims: list[int]

    """

    if hidden_dims is None:
        hidden_dims = [input_dim * 10, input_dim * 10]
    nn = DenseNN(context_dim,
                 hidden_dims,
                 param_dims=[input_dim] * count_transforms)
    return ConditionalHouseholder(input_dim, nn, count_transforms)
def inverted_conditional_planar_flow_factory(flow_depth,
                                             problem_dim,
                                             c_net_depth,
                                             c_net_h_dim,
                                             context_dim,
                                             context_n_h_dim,
                                             context_n_depth,
                                             rich_context_dim,
                                             batchnorm_momentum,
                                             cuda,
                                             context_dropout=None):
    if cuda:
        base_dist = dist.Normal(
            torch.zeros(problem_dim).cuda(),
            torch.ones(problem_dim).cuda())
    else:
        base_dist = dist.Normal(torch.zeros(problem_dim),
                                torch.ones(problem_dim))

    # We define the transformations
    transforms = [
        inverted_conditional_planar(
            input_dim=problem_dim,
            context_dim=rich_context_dim,
            hidden_dims=[c_net_h_dim for i in range(c_net_depth)],
        ) for i in range(flow_depth)
    ]

    # If we want batchnorm add those in. Then sandwich the steps together to a flow
    if batchnorm_momentum is None:
        batchnorms = None
        flows = transforms
    else:
        batchnorms = [
            batchnorm(input_dim=problem_dim, momentum=batchnorm_momentum)
            for i in range(flow_depth)
        ]
        for bn in batchnorms:
            bn.gamma.data += torch.ones(problem_dim)
        flows = list(itertools.chain(*zip(batchnorms, transforms)))[1:]

    # We define the conditioning network
    context_hidden_dims = [context_n_h_dim for i in range(context_n_depth)]
    if context_dropout is None:
        condinet = DenseNN(input_dim=context_dim,
                           hidden_dims=context_hidden_dims,
                           param_dims=[rich_context_dim])
    else:
        condinet = DropoutDenseNN(input_dim=context_dim,
                                  hidden_dims=context_hidden_dims,
                                  param_dims=[rich_context_dim],
                                  dropout=context_dropout)
    # We define the normalizing flow wrapper
    normalizing_flow = ConditionalNormalizingFlowWrapper3(
        transforms, flows, base_dist, condinet, batchnorms)
    if cuda:
        normalizing_flow.cuda()

    return normalizing_flow
Example #13
0
def init_affine_coupling(dim: int, device: str = "cpu", **kwargs):
    """Provides the default initial arguments for an affine autoregressive transform."""
    assert dim > 1, "In 1d this would be equivalent to affine flows, use them."
    nonlinearity = kwargs.pop("nonlinearity", nn.ReLU())
    split_dim = kwargs.get("split_dim", dim // 2)
    hidden_dims = kwargs.pop("hidden_dims", [5 * dim + 20, 5 * dim + 20])
    arn = DenseNN(split_dim, hidden_dims, nonlinearity=nonlinearity).to(device)
    return [split_dim, arn], {"log_scale_min_clip": -3.0}
def inverted_conditional_planar(input_dim, context_dim, hidden_dims=None):

    if hidden_dims is None:
        hidden_dims = [input_dim * 10, input_dim * 10]
    nn = DenseNN(context_dim,
                 hidden_dims,
                 param_dims=[1, input_dim, input_dim])
    return InvertedConditionalPlanar(nn)
Example #15
0
def conditional_normalizing_flow_factory2(flow_depth,
                                          problem_dim,
                                          c_net_depth,
                                          c_net_h_dim,
                                          context_dim,
                                          context_n_h_dim,
                                          context_n_depth,
                                          rich_context_dim,
                                          cuda,
                                          coupling_dropout=None,
                                          context_dropout=None):
    # We define the base distribution
    if cuda:
        base_dist = dist.Normal(
            torch.zeros(problem_dim).cuda(),
            torch.ones(problem_dim).cuda())
    else:
        base_dist = dist.Normal(torch.zeros(problem_dim),
                                torch.ones(problem_dim))

    # We define the transformations
    transforms = [
        conditional_affine_coupling2(
            input_dim=problem_dim,
            context_dim=context_dim,
            hidden_dims=[
                c_net_h_dim for i in range(c_net_depth)
            ],  # Note array here to create multiple layers in DenseNN
            rich_context_dim=rich_context_dim,
            dropout=coupling_dropout) for i in range(flow_depth)
    ]

    # need a fix for this
    perms = [permute(2, torch.tensor([1, 0])) for i in range(flow_depth)]

    # We sandwich the AffineCouplings and permutes together. Unelegant hotfix to remove last permute but it works
    flows = list(itertools.chain(*zip(transforms, perms)))[:-1]

    # We define the conditioning network
    context_hidden_dims = [context_n_h_dim for i in range(context_n_depth)]
    if context_dropout is None:
        condinet = DenseNN(input_dim=context_dim,
                           hidden_dims=context_hidden_dims,
                           param_dims=[rich_context_dim])
    else:
        condinet = DropoutDenseNN(input_dim=context_dim,
                                  hidden_dims=context_hidden_dims,
                                  param_dims=[rich_context_dim],
                                  dropout=context_dropout)
    # We define the normalizing flow wrapper
    normalizing_flow = ConditionalNormalizingFlowWrapper2(
        transforms, flows, base_dist, condinet)
    if cuda:
        normalizing_flow.cuda()

    return normalizing_flow
Example #16
0
def affine_coupling(input_dim,
                    hidden_dims=None,
                    split_dim=None,
                    dim=-1,
                    **kwargs):
    """
    A helper function to create an
    :class:`~pyro.distributions.transforms.AffineCoupling` object that takes care of
    constructing a dense network with the correct input/output dimensions.

    :param input_dim: Dimension(s) of input variable to permute. Note that when
        `dim < -1` this must be a tuple corresponding to the event shape.
    :type input_dim: int
    :param hidden_dims: The desired hidden dimensions of the dense network. Defaults
        to using [10*input_dim]
    :type hidden_dims: list[int]
    :param split_dim: The dimension to split the input on for the coupling
        transform. Defaults to using input_dim // 2
    :type split_dim: int
    :param dim: the tensor dimension on which to split. This value must be negative
        and defines the event dim as `abs(dim)`.
    :type dim: int
    :param log_scale_min_clip: The minimum value for clipping the log(scale) from
        the autoregressive NN
    :type log_scale_min_clip: float
    :param log_scale_max_clip: The maximum value for clipping the log(scale) from
        the autoregressive NN
    :type log_scale_max_clip: float

    """
    if not isinstance(input_dim, int):
        if len(input_dim) != -dim:
            raise ValueError(
                "event shape {} must have same length as event_dim {}".format(
                    input_dim, -dim))
        event_shape = input_dim
        extra_dims = reduce(operator.mul, event_shape[(dim + 1):], 1)
    else:
        event_shape = [input_dim]
        extra_dims = 1
    event_shape = list(event_shape)

    if split_dim is None:
        split_dim = event_shape[dim] // 2
    if hidden_dims is None:
        hidden_dims = [10 * event_shape[dim] * extra_dims]

    hypernet = DenseNN(
        split_dim * extra_dims,
        hidden_dims,
        [
            (event_shape[dim] - split_dim) * extra_dims,
            (event_shape[dim] - split_dim) * extra_dims,
        ],
    )
    return AffineCoupling(split_dim, hypernet, dim=dim, **kwargs)
Example #17
0
    def _build_image_flow(self):

        self.trans_modules = ComposeTransformModule([])

        self.x_transforms = []

        self.x_transforms += [self._get_preprocess_transforms()]

        c = 1
        for _ in range(self.num_scales):
            self.x_transforms.append(SqueezeTransform())
            c *= 4

            for _ in range(self.flows_per_scale):
                if self.use_actnorm:
                    actnorm = ActNorm(c)
                    self.trans_modules.append(actnorm)
                    self.x_transforms.append(actnorm)

                gcp = GeneralizedChannelPermute(channels=c)
                self.trans_modules.append(gcp)
                self.x_transforms.append(gcp)

                self.x_transforms.append(
                    TransposeTransform(torch.tensor((1, 2, 0))))

                ac = ConditionalAffineCoupling(
                    c // 2,
                    BasicFlowConvNet(c // 2, self.hidden_channels,
                                     (c // 2, c // 2), 2))
                self.trans_modules.append(ac)
                self.x_transforms.append(ac)

                self.x_transforms.append(
                    TransposeTransform(torch.tensor((2, 0, 1))))

            gcp = GeneralizedChannelPermute(channels=c)
            self.trans_modules.append(gcp)
            self.x_transforms.append(gcp)

        self.x_transforms += [
            ReshapeTransform((4**self.num_scales, 32 // 2**self.num_scales,
                              32 // 2**self.num_scales), (1, 32, 32))
        ]

        if self.use_affine_ex:
            affine_net = DenseNN(2, [16, 16], param_dims=[1, 1])
            affine_trans = ConditionalAffineTransform(context_nn=affine_net,
                                                      event_dim=3)

            self.trans_modules.append(affine_trans)
            self.x_transforms.append(affine_trans)
def conditional_spline(input_dim, context_dim, hidden_dims=None, count_bins=8, bound=3.0, order='linear',
                       nonlinearity=nn.LeakyReLU(0.1)):
    if hidden_dims is None:
        hidden_dims = [input_dim * 10, input_dim * 10]
    if order == 'linear':
        net = DenseNN(context_dim,
                      hidden_dims,
                      param_dims=[input_dim * count_bins,
                                  input_dim * count_bins,
                                  input_dim * (count_bins - 1),
                                  input_dim * count_bins],
                      nonlinearity=nonlinearity)
    elif order == 'quadratic':
        net = DenseNN(context_dim,
                      hidden_dims,
                      param_dims=[input_dim * count_bins,
                                  input_dim * count_bins,
                                  input_dim * (count_bins - 1)],
                      nonlinearity=nonlinearity)
    else:
        raise ValueError("Keyword argument 'order' must be one of ['linear', 'quadratic'], but '{}' was found!".format(order))
    return ConditionalSpline(net, input_dim, count_bins, bound=bound, order=order)
def spline_coupling(input_dim, split_dim=None, hidden_dims=None, count_bins=8, bound=3.0, nonlinearity=nn.LeakyReLU(0.1)):

    if split_dim is None:
        split_dim = input_dim // 2
    if hidden_dims is None:
        hidden_dims = [input_dim * 10, input_dim * 10]
    net = DenseNN(split_dim,
                 hidden_dims,
                 param_dims=[(input_dim - split_dim) * count_bins,
                             (input_dim - split_dim) * count_bins,
                             (input_dim - split_dim) * (count_bins - 1),
                             (input_dim - split_dim) * count_bins],
                 nonlinearity=nonlinearity)
    return SplineCoupling(input_dim, split_dim, net, count_bins, bound)
Example #20
0
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        # ventricle_volume flow
        ventricle_volume_net = DenseNN(2, [8, 16],
                                       param_dims=[1, 1],
                                       nonlinearity=torch.nn.LeakyReLU(.1))
        self.ventricle_volume_flow_components = ConditionalAffineTransform(
            context_nn=ventricle_volume_net, event_dim=0)
        self.ventricle_volume_flow_transforms = [
            self.ventricle_volume_flow_components,
            self.ventricle_volume_flow_constraint_transforms
        ]

        # brain_volume flow
        brain_volume_net = DenseNN(2, [8, 16],
                                   param_dims=[1, 1],
                                   nonlinearity=torch.nn.LeakyReLU(.1))
        self.brain_volume_flow_components = ConditionalAffineTransform(
            context_nn=brain_volume_net, event_dim=0)
        self.brain_volume_flow_transforms = [
            self.brain_volume_flow_components,
            self.brain_volume_flow_constraint_transforms
        ]
def conditional_generalized_channel_permute(context_dim,
                                            channels=3,
                                            hidden_dims=None):
    """
    A helper function to create a
    :class:`~pyro.distributions.transforms.ConditionalGeneralizedChannelPermute`
    object for consistency with other helpers.

    :param channels: Number of channel dimensions in the input.
    :type channels: int

    """

    if hidden_dims is None:
        hidden_dims = [channels * 10, channels * 10]
    nn = DenseNN(context_dim, hidden_dims, param_dims=[channels * channels])
    return ConditionalGeneralizedChannelPermute(nn, channels)
Example #22
0
def conditional_normalizing_flow_factory3(flow_depth, problem_dim, c_net_depth, c_net_h_dim, context_dim,
                                          context_n_h_dim, context_n_depth, rich_context_dim, batchnorm_momentum, cuda,
                                          coupling_dropout=None, context_dropout=None):
    if cuda:
        base_dist = dist.Normal(torch.zeros(problem_dim).cuda(), torch.ones(problem_dim).cuda())
    else:
        base_dist = dist.Normal(torch.zeros(problem_dim), torch.ones(problem_dim))

    # We define the transformations
    transforms = [conditional_affine_coupling2(input_dim=problem_dim,
                                               context_dim=context_dim,
                                               hidden_dims=[c_net_h_dim for i in range(c_net_depth)], # Note array here to create multiple layers in DenseNN
                                               rich_context_dim=rich_context_dim,
                                               dropout=coupling_dropout)
                  for i in range(flow_depth)]


    # Permutes are needed to be able to transform all dimensions.
    # Note that the transform is fixed here since we only have 2 dimensions. For more dimensions don't fix it and let it be random.
    perms = [permute(input_dim=problem_dim, permutation=torch.tensor([1, 0])) for i in range(flow_depth)]

    # If we want batchnorm add those in. Then sandwich the steps together to a flow
    if batchnorm_momentum is None:
        batchnorms = None
        flows = list(itertools.chain(*zip(transforms, perms)))[:-1]
    else:
        batchnorms = [batchnorm(input_dim=problem_dim, momentum=batchnorm_momentum) for i in range(flow_depth)]
        for bn in batchnorms:
            bn.gamma.data += torch.ones(problem_dim)
        flows = list(itertools.chain(*zip(batchnorms, transforms, perms)))[1:-1]

    # We define the conditioning network
    context_hidden_dims = [context_n_h_dim for i in range(context_n_depth)]
    if context_dropout is None:
        condinet = DenseNN(input_dim=context_dim, hidden_dims=context_hidden_dims, param_dims=[rich_context_dim])
    else:
        condinet = DropoutDenseNN(input_dim=context_dim, hidden_dims=context_hidden_dims, param_dims=[rich_context_dim],
                                  dropout=context_dropout)
    # We define the normalizing flow wrapper
    normalizing_flow = ConditionalNormalizingFlowWrapper3(transforms, flows, base_dist, condinet, batchnorms)
    if cuda:
        normalizing_flow.cuda()

    return normalizing_flow
Example #23
0
    def __init__(self,
                 flow_type,
                 num_flows,
                 hidden_dim=20,
                 need_permute=False):
        super(NormFlow, self).__init__()
        self.need_permute = need_permute
        if flow_type == 'IAF':
            self.flow = nn.ModuleList([
                AffineAutoregressive(AutoRegressiveNN(hidden_dim,
                                                      [2 * hidden_dim]),
                                     stable=True) for _ in range(num_flows)
            ])
        elif flow_type == 'BNAF':
            self.flow = nn.ModuleList([
                BlockAutoregressive(input_dim=hidden_dim)
                for _ in range(num_flows)
            ])
        elif flow_type == 'RNVP':
            split_dim = hidden_dim // 2
            param_dims = [hidden_dim - split_dim, hidden_dim - split_dim]
            hypernet = DenseNN(split_dim, [2 * hidden_dim], param_dims)
            self.flow = nn.ModuleList([
                AffineCoupling(split_dim, hypernet) for _ in range(num_flows)
            ])
        else:
            raise NotImplementedError

        even = [i for i in range(0, hidden_dim, 2)]
        odd = [i for i in range(1, hidden_dim, 2)]
        undo_eo = [
            i // 2 if i % 2 == 0 else (i // 2 + len(even))
            for i in range(hidden_dim)
        ]
        undo_oe = [(i // 2 + len(odd)) if i % 2 == 0 else i // 2
                   for i in range(hidden_dim)]
        self.register_buffer('eo', torch.tensor(even + odd, dtype=torch.int64))
        self.register_buffer('oe', torch.tensor(odd + even, dtype=torch.int64))
        self.register_buffer('undo_eo', torch.tensor(undo_eo,
                                                     dtype=torch.int64))
        self.register_buffer('undo_oe', torch.tensor(undo_oe,
                                                     dtype=torch.int64))
def affine_coupling(input_dim, hidden_dims=None, split_dim=None, dim=-1, nonlinearity=nn.LeakyReLU(0.1), **kwargs):
    if not isinstance(input_dim, int):
        if len(input_dim) != -dim:
            raise ValueError('event shape {} must have same length as event_dim {}'.format(input_dim, -dim))
        event_shape = input_dim
        extra_dims = reduce(operator.mul, event_shape[(dim + 1):], 1)
    else:
        event_shape = [input_dim]
        extra_dims = 1
    event_shape = list(event_shape)

    if split_dim is None:
        split_dim = event_shape[dim] // 2
    if hidden_dims is None:
        hidden_dims = [10 * event_shape[dim] * extra_dims]

    hypernet = DenseNN(split_dim * extra_dims,
                       hidden_dims,
                       [(event_shape[dim] - split_dim) * extra_dims,
                        (event_shape[dim] - split_dim) * extra_dims],
                       nonlinearity=nonlinearity)
    return AffineCoupling(split_dim, hypernet, dim=dim, **kwargs)
Example #25
0
    def __init__(self,
                 input_dim=2,
                 split_dim=1,
                 hidden_dim=128,
                 num_layers=1,
                 flow_length=10,
                 use_cuda=False):
        super(NormalizingFlow, self).__init__()
        self.base_dist = dist.Normal(
            torch.zeros(input_dim),
            torch.ones(input_dim))  # base distribution is Isotropic Gaussian
        self.param_dims = [input_dim - split_dim, input_dim - split_dim]
        # Define series of bijective transformations
        self.transforms = [
            AffineCoupling(
                split_dim,
                DenseNN(split_dim, [hidden_dim] * num_layers, self.param_dims))
            for _ in range(flow_length)
        ]
        self.perms = [
            permute(2, torch.tensor([1, 0])) for _ in range(flow_length)
        ]
        # Concatenate AffineCoupling layers with Permute Layers
        self.generative_flows = list(
            itertools.chain(*zip(self.transforms, self.perms))
        )[:-1]  # generative direction (z-->x)
        self.normalizing_flows = self.generative_flows[::
                                                       -1]  # normalizing direction (x-->z)
        self.flow_dist = dist.TransformedDistribution(self.base_dist,
                                                      self.generative_flows)

        self.use_cuda = use_cuda
        if self.use_cuda:
            self.cuda()
            nn.ModuleList(self.transforms).cuda()
            self.base_dist = dist.Normal(
                torch.zeros(input_dim).cuda(),
                torch.ones(input_dim).cuda())
Example #26
0
def train_vae(args):
    # pdb.set_trace()
    best_metric = -float("inf")

    prior_params = list([])
    varflow_params = list([])
    prior_flow = None
    variational_flow = None

    data = Dataset(args)
    if args.data in ['goodreads', 'big_dataset']:
        args.feature_shape = data.feature_shape

    if args.nf_prior:
        flows = []
        for i in range(args.num_flows_prior):
            if args.nf_prior == 'IAF':
                one_arn = AutoRegressiveNN(args.z_dim,
                                           [2 * args.z_dim]).to(args.device)
                one_flow = AffineAutoregressive(one_arn)
            elif args.nf_prior == 'RNVP':
                hypernet = DenseNN(
                    input_dim=args.z_dim // 2,
                    hidden_dims=[2 * args.z_dim, 2 * args.z_dim],
                    param_dims=[
                        args.z_dim - args.z_dim // 2,
                        args.z_dim - args.z_dim // 2
                    ]).to(args.device)
                one_flow = AffineCoupling(args.z_dim // 2,
                                          hypernet).to(args.device)
            flows.append(one_flow)
        prior_flow = nn.ModuleList(flows)
        prior_params = list(prior_flow.parameters())

    if args.data == 'mnist':
        encoder = Encoder(args).to(args.device)
    elif args.data in ['goodreads', 'big_dataset']:
        encoder = Encoder_rec(args).to(args.device)

    if args.nf_vardistr:
        flows = []
        for i in range(args.num_flows_vardistr):
            one_arn = AutoRegressiveNN(args.z_dim, [2 * args.z_dim],
                                       param_dims=[2 * args.z_dim] * 3).to(
                                           args.device)
            one_flows = NeuralAutoregressive(one_arn, hidden_units=256)
            flows.append(one_flows)
        variational_flow = nn.ModuleList(flows)
        varflow_params = list(variational_flow.parameters())

    if args.data == 'mnist':
        decoder = Decoder(args).to(args.device)
    elif args.data in ['goodreads', 'big_dataset']:
        decoder = Decoder_rec(args).to(args.device)

    params = list(encoder.parameters()) + list(
        decoder.parameters()) + prior_params + varflow_params
    optimizer = torch.optim.Adam(params=params)
    scheduler = torch.optim.lr_scheduler.StepLR(optimizer,
                                                step_size=100,
                                                gamma=0.1)

    current_tolerance = 0
    # with torch.autograd.detect_anomaly():
    for ep in tqdm(range(args.num_epoches)):
        # training cycle
        for batch_num, batch_train in enumerate(data.next_train_batch()):
            batch_train_repeated = batch_train.repeat(
                *[[args.n_samples] + [1] * (len(batch_train.shape) - 1)])
            mu, sigma = encoder(batch_train_repeated)
            sum_log_sigma = torch.sum(torch.log(sigma), 1)
            sum_log_jacobian = 0.
            eps = args.std_normal.sample(mu.shape)
            z = mu + sigma * eps
            if not args.use_reparam:
                z = z.detach()
            if variational_flow:
                prev_v = z
                for flow_num in range(args.num_flows_vardistr):
                    u = variational_flow[flow_num](prev_v)
                    sum_log_jacobian += variational_flow[
                        flow_num].log_abs_det_jacobian(prev_v, u)
                    prev_v = u
                z = u
            logits = decoder(z)
            elbo = compute_objective(args=args,
                                     x_logits=logits,
                                     x_true=batch_train_repeated,
                                     sampled_noise=eps,
                                     inf_samples=z,
                                     sum_log_sigma=sum_log_sigma,
                                     prior_flow=prior_flow,
                                     sum_log_jacobian=sum_log_jacobian,
                                     mu=mu,
                                     sigma=sigma)
            (-elbo).backward()
            optimizer.step()
            optimizer.zero_grad()
        # scheduler step
        scheduler.step()

        # validation
        with torch.no_grad():
            metric = validate_vae(args=args,
                                  encoder=encoder,
                                  decoder=decoder,
                                  dataset=data,
                                  prior_flow=prior_flow,
                                  variational_flow=variational_flow)
            if (metric != metric).sum():
                print('NAN appeared!')
                raise ValueError
            if metric > best_metric:
                current_tolerance = 0
                best_metric = metric
                if not os.path.exists('./models/{}/'.format(args.data)):
                    os.makedirs('./models/{}/'.format(args.data))
                torch.save(
                    encoder,
                    './models/{}/best_encoder_data_{}_skips_{}_prior_{}_numflows_{}_varflow_{}_numvarflows_{}_samples_{}_zdim_{}_usereparam_{}.pt'
                    .format(args.data, args.data, args.use_skips,
                            args.nf_prior, args.num_flows_prior,
                            args.nf_vardistr, args.num_flows_vardistr,
                            args.n_samples, args.z_dim, args.use_reparam))
                torch.save(
                    decoder,
                    './models/{}/best_decoder_data_{}_skips_{}_prior_{}_numflows_{}_varflow_{}_numvarflows_{}_samples_{}_zdim_{}_usereparam_{}.pt'
                    .format(args.data, args.data, args.use_skips,
                            args.nf_prior, args.num_flows_prior,
                            args.nf_vardistr, args.num_flows_vardistr,
                            args.n_samples, args.z_dim, args.use_reparam))
                if args.nf_prior:
                    torch.save(
                        prior_flow,
                        './models/{}/best_prior_data_{}_skips_{}_prior_{}_numflows_{}_varflow_{}_numvarflows_{}_samples_{}_zdim_{}_usereparam_{}.pt'
                        .format(args.data, args.data, args.use_skips,
                                args.nf_prior, args.num_flows_prior,
                                args.nf_vardistr, args.num_flows_vardistr,
                                args.n_samples, args.z_dim, args.use_reparam))
                if args.nf_vardistr:
                    torch.save(
                        variational_flow,
                        './models/{}/best_varflow_data_{}_skips_{}_prior_{}_numflows_{}_varflow_{}_numvarflows_{}_samples_{}_zdim_{}_usereparam_{}.pt'
                        .format(args.data, args.data, args.use_skips,
                                args.nf_prior, args.num_flows_prior,
                                args.nf_vardistr, args.num_flows_vardistr,
                                args.n_samples, args.z_dim, args.use_reparam))
            else:
                current_tolerance += 1
                if current_tolerance >= args.early_stopping_tolerance:
                    print(
                        "Early stopping on epoch {} (effectively trained for {} epoches)"
                        .format(ep, ep - args.early_stopping_tolerance))
                    break
            print(
                'Current epoch: {}'.format(ep), '\t',
                'Current validation {}: {}'.format(args.metric_name, metric),
                '\t', 'Best validation {}: {}'.format(args.metric_name,
                                                      best_metric))

    # return best models:
    encoder = torch.load(
        './models/{}/best_encoder_data_{}_skips_{}_prior_{}_numflows_{}_varflow_{}_numvarflows_{}_samples_{}_zdim_{}_usereparam_{}.pt'
        .format(args.data, args.data, args.use_skips, args.nf_prior,
                args.num_flows_prior, args.nf_vardistr,
                args.num_flows_vardistr, args.n_samples, args.z_dim,
                args.use_reparam))
    decoder = torch.load(
        './models/{}/best_decoder_data_{}_skips_{}_prior_{}_numflows_{}_varflow_{}_numvarflows_{}_samples_{}_zdim_{}_usereparam_{}.pt'
        .format(args.data, args.data, args.use_skips, args.nf_prior,
                args.num_flows_prior, args.nf_vardistr,
                args.num_flows_vardistr, args.n_samples, args.z_dim,
                args.use_reparam))
    if args.nf_prior:
        prior_flow = torch.load(
            './models/{}/best_prior_data_{}_skips_{}_prior_{}_numflows_{}_varflow_{}_numvarflows_{}_samples_{}_zdim_{}_usereparam_{}.pt'
            .format(args.data, args.data, args.use_skips, args.nf_prior,
                    args.num_flows_prior, args.nf_vardistr,
                    args.num_flows_vardistr, args.n_samples, args.z_dim,
                    args.use_reparam))
    if args.nf_vardistr:
        variational_flow = torch.load(
            './models/{}/best_varflow_data_{}_skips_{}_prior_{}_numflows_{}_varflow_{}_numvarflows_{}_samples_{}_zdim_{}_usereparam_{}.pt'
            .format(args.data, args.data, args.use_skips, args.nf_prior,
                    args.num_flows_prior, args.nf_vardistr,
                    args.num_flows_vardistr, args.n_samples, args.z_dim,
                    args.use_reparam))
    return encoder, decoder, prior_flow, variational_flow, data
def combi_conditional_normalizing_flow_factory(flow_depth,
                                               problem_dim,
                                               c_net_depth,
                                               c_net_h_dim,
                                               context_dim,
                                               context_n_h_dim,
                                               context_n_depth,
                                               rich_context_dim,
                                               batchnorm_momentum,
                                               cuda,
                                               coupling_dropout=None,
                                               context_dropout=None,
                                               planar_first=True):
    assert (
        flow_depth % 2 == 0
    ), "The flow depth must be divisible by 2 to allow both Planar and AC transforms"

    if cuda:
        base_dist = dist.Normal(
            torch.zeros(problem_dim).cuda(),
            torch.ones(problem_dim).cuda())
    else:
        base_dist = dist.Normal(torch.zeros(problem_dim),
                                torch.ones(problem_dim))

    # We define the transformations
    affine_couplings = [
        conditional_affine_coupling2(
            input_dim=problem_dim,
            context_dim=context_dim,
            hidden_dims=[c_net_h_dim for i in range(c_net_depth)],
            rich_context_dim=rich_context_dim,
            dropout=coupling_dropout) for i in range(flow_depth // 2)
    ]

    planars = [
        inverted_conditional_planar(
            input_dim=problem_dim,
            context_dim=rich_context_dim,
            hidden_dims=[c_net_h_dim for i in range(c_net_depth)],
        ) for i in range(flow_depth // 2)
    ]
    transforms = affine_couplings + planars

    # Permutes are needed to be able to transform all dimensions.
    # Note that the transform is fixed here since we only have 2 dimensions. For more dimensions let it be random.
    perms = [
        permute(input_dim=problem_dim, permutation=torch.tensor([1, 0]))
        for i in range(flow_depth // 2)
    ]

    # Assemble the flow
    if planar_first:
        flows = list(
            itertools.chain(*zip(planars, affine_couplings, perms)))[:-1]
    else:
        flows = list(
            itertools.chain(*zip(affine_couplings, planars, perms)))[:-1]

    # If we want batchnorm add those in. Then sandwich the steps together to a flow
    if batchnorm_momentum is None:
        batchnorms = None
    else:
        bn_flow = flows[:1]
        batchnorms = []
        for trans in flows[1:]:
            if isinstance(trans, ConditionalAffineCoupling2) or isinstance(
                    trans, InvertedConditionalPlanar):
                batchnorms.append(
                    batchnorm(input_dim=problem_dim,
                              momentum=batchnorm_momentum))
                bn_flow.append(batchnorms[-1])
            bn_flow.append(trans)
        flows = bn_flow
        for bn in batchnorms:
            bn.gamma.data += torch.ones(problem_dim)

    # We define the conditioning network
    context_hidden_dims = [context_n_h_dim for i in range(context_n_depth)]
    if context_dropout is None:
        condinet = DenseNN(input_dim=context_dim,
                           hidden_dims=context_hidden_dims,
                           param_dims=[rich_context_dim])
    else:
        condinet = DropoutDenseNN(input_dim=context_dim,
                                  hidden_dims=context_hidden_dims,
                                  param_dims=[rich_context_dim],
                                  dropout=context_dropout)
    # We define the normalizing flow wrapper
    normalizing_flow = ConditionalNormalizingFlowWrapper3(
        transforms, flows, base_dist, condinet, batchnorms)
    if cuda:
        normalizing_flow.cuda()

    return normalizing_flow
Example #28
0
 def _make_cond_planar(self, input_dim, observed_dim):
     hypernet = DenseNN(observed_dim, [input_dim * 10, input_dim * 10],
                        param_dims=[1, input_dim, input_dim])
     z = torch.rand(observed_dim)
     return transforms.ConditionalPlanarFlow(hypernet).condition(z)
    def __init__(self, **kwargs):
        super().__init__(**kwargs)

        # decoder parts
        self.decoder = Decoder(num_convolutions=self.num_convolutions,
                               filters=self.dec_filters,
                               latent_dim=self.latent_dim + 3,
                               upconv=self.use_upconv)

        self.decoder_mean = torch.nn.Conv2d(1, 1, 1)
        self.decoder_logstd = torch.nn.Parameter(
            torch.ones([]) * self.logstd_init)

        self.decoder_affine_param_net = nn.Sequential(
            nn.Linear(self.latent_dim + 3, self.latent_dim), nn.ReLU(),
            nn.Linear(self.latent_dim, self.latent_dim), nn.ReLU(),
            nn.Linear(self.latent_dim, 6))

        self.decoder_affine_param_net[-1].weight.data.zero_()
        self.decoder_affine_param_net[-1].bias.data.copy_(
            torch.tensor([1, 0, 0, 0, 1, 0], dtype=torch.float))

        # age flow
        self.age_flow_components = ComposeTransformModule([Spline(1)])
        self.age_flow_lognorm = AffineTransform(loc=0., scale=1.)
        self.age_flow_constraint_transforms = ComposeTransform(
            [self.age_flow_lognorm, ExpTransform()])
        self.age_flow_transforms = ComposeTransform(
            [self.age_flow_components, self.age_flow_constraint_transforms])

        # ventricle_volume flow
        # TODO: decide on how many things to condition on
        ventricle_volume_net = DenseNN(2, [8, 16],
                                       param_dims=[1, 1],
                                       nonlinearity=torch.nn.Identity())
        self.ventricle_volume_flow_components = ConditionalAffineTransform(
            context_nn=ventricle_volume_net, event_dim=0)
        self.ventricle_volume_flow_lognorm = AffineTransform(loc=0., scale=1.)
        self.ventricle_volume_flow_constraint_transforms = ComposeTransform(
            [self.ventricle_volume_flow_lognorm,
             ExpTransform()])
        self.ventricle_volume_flow_transforms = [
            self.ventricle_volume_flow_components,
            self.ventricle_volume_flow_constraint_transforms
        ]

        # brain_volume flow
        # TODO: decide on how many things to condition on
        brain_volume_net = DenseNN(2, [8, 16],
                                   param_dims=[1, 1],
                                   nonlinearity=torch.nn.Identity())
        self.brain_volume_flow_components = ConditionalAffineTransform(
            context_nn=brain_volume_net, event_dim=0)
        self.brain_volume_flow_lognorm = AffineTransform(loc=0., scale=1.)
        self.brain_volume_flow_constraint_transforms = ComposeTransform(
            [self.brain_volume_flow_lognorm,
             ExpTransform()])
        self.brain_volume_flow_transforms = [
            self.brain_volume_flow_components,
            self.brain_volume_flow_constraint_transforms
        ]

        # encoder parts
        self.encoder = Encoder(num_convolutions=self.num_convolutions,
                               filters=self.enc_filters,
                               latent_dim=self.latent_dim)

        # TODO: do we need to replicate the PGM here to be able to run conterfactuals? oO
        latent_layers = torch.nn.Sequential(
            torch.nn.Linear(self.latent_dim + 3, self.latent_dim),
            torch.nn.ReLU())
        self.latent_encoder = DeepIndepNormal(latent_layers, self.latent_dim,
                                              self.latent_dim)
Example #30
0
 def _make_affine_coupling(self, input_dim):
     split_dim = input_dim // 2
     hypernet = DenseNN(split_dim, [10 * input_dim],
                        [input_dim - split_dim, input_dim - split_dim])
     return transforms.AffineCoupling(split_dim, hypernet)