Example #1
0
 def model():
     locs = pyro.param("locs",
                       ops.randn(3),
                       constraint=dist.constraints.real)
     scales = pyro.param("scales",
                         ops.exp(ops.randn(3)),
                         constraint=dist.constraints.positive)
     p = ops.tensor([0.5, 0.3, 0.2])
     x = pyro.sample("x", dist.Categorical(p))
     pyro.sample("obs", dist.Normal(locs[x], scales[x]), obs=data)
Example #2
0
 def guide():
     q = pyro.param("q",
                    ops.exp(ops.randn(3)),
                    constraint=dist.constraints.simplex)
     pyro.sample("x", dist.Categorical(q))
Example #3
0
 def guide():
     with pyro.plate("plate", len(data), dim=-1):
         p = pyro.param("p", ops.ones(len(data), 3) / 3, event_dim=1)
         pyro.sample("x", dist.Categorical(p))
     return p
Example #4
0
 def model():
     locs = pyro.param("locs", ops.tensor([-1., 0., 1.]))
     with pyro.plate("plate", len(data), dim=-1):
         x = pyro.sample("x", dist.Categorical(ops.ones(3) / 3))
         pyro.sample("obs", dist.Normal(locs[x], 1.), obs=data)
Example #5
0
 def guide():
     p = pyro.param("p", ops.tensor([0.5, 0.3, 0.2]))
     with pyro.plate("plate", len(data), dim=-1):
         pyro.sample("x", dist.Categorical(p))
Example #6
0
 def model():
     locs = pyro.param("locs", ops.tensor([0.2, 0.3, 0.5]))
     p = ops.tensor([0.2, 0.3, 0.5])
     with pyro.plate("plate", len(data), dim=-1):
         x = pyro.sample("x", dist.Categorical(p))
         pyro.sample("obs", dist.Normal(locs[x], 1.), obs=data)