Example #1
0
    def save_fit_result(self, out_file_name=''):
        """Save the fit result, including a copy of the rest of the file if it does not exist at the specified path.

        If out_file_name is empty or if it matches the parent's current file, this updates the file.

        Otherwise, the parent's file is copied to out_file_name and
        then the updated peak fit data is written to the copy.

        :param out_file_name: string absolute fill path for the place to save the file

        """

        fit_result = self.parent.fit_result
        if fit_result is None:
            return

        if out_file_name is not None and self.parent._curr_file_name != out_file_name:
            copyfile(self.parent._curr_file_name, out_file_name)
            current_project_file = out_file_name
        else:
            current_project_file = self.parent._curr_file_name

        project_h5_file = HidraProjectFile(current_project_file,
                                           mode=HidraProjectFileMode.READWRITE)
        peakcollections = fit_result.peakcollections
        for peak in peakcollections:
            project_h5_file.write_peak_parameters(peak)
        project_h5_file.save(False)
        project_h5_file.close()
Example #2
0
def test_strain_io():
    """Test PeakCollection writing and reading with *D reference*

    Returns
    -------

    """
    # Generate a unique test file
    now = datetime.datetime.now()
    test_file_name = 'test_strain_io_{}.h5'.format(now.toordinal())
    test_ref_d = 1.23454321
    test_ref_d2 = np.array([1.23, 1.24, 1.25])
    peak_tag = 'Fake Peak D'
    peak_tag_2 = 'Fake Peak D Diff'

    # Generate a HiDRA project file
    test_project_file = HidraProjectFile(test_file_name,
                                         HidraProjectFileMode.OVERWRITE)

    # Create a ND array for output parameters
    param_names = PeakShape.PSEUDOVOIGT.native_parameters + BackgroundFunction.LINEAR.native_parameters
    data_type = list()
    for param_name in param_names:
        data_type.append((param_name, np.float32))
    test_error_array = np.zeros(3, dtype=data_type)
    test_params_array = np.zeros(3, dtype=data_type)

    for i in range(3):
        # sub run
        for j, par_name in enumerate(param_names):
            test_params_array[par_name][i] = 2**i + 0.1 * 3**j
            test_error_array[par_name][i] = np.sqrt(
                abs(test_params_array[par_name][i]))
    # END-FOR
    chi2_array = np.array([0.323, 0.423, 0.523])

    # Add test data to output
    peaks = PeakCollection(peak_tag, PeakShape.PSEUDOVOIGT,
                           BackgroundFunction.LINEAR)
    peaks.set_peak_fitting_values(np.array([1, 2, 3]), test_params_array,
                                  test_error_array, chi2_array)
    peaks.set_d_reference(test_ref_d)

    # Add 2nd peak
    peaks2 = PeakCollection(peak_tag_2, PeakShape.PSEUDOVOIGT,
                            BackgroundFunction.LINEAR)
    peaks2.set_peak_fitting_values(np.array([1, 2, 3]), test_params_array,
                                   test_error_array, chi2_array)
    peaks2.set_d_reference(test_ref_d2)

    # Write
    test_project_file.write_peak_parameters(peaks)
    test_project_file.write_peak_parameters(peaks2)
    # Save
    test_project_file.save(verbose=False)

    # Verify
    assert os.path.exists(test_file_name), 'Test project file for peak fitting result {} cannot be found.' \
                                           ''.format(test_file_name)

    # import
    verify_project_file = HidraProjectFile(test_file_name,
                                           HidraProjectFileMode.READONLY)

    # check tags
    peak_tags = verify_project_file.read_peak_tags()
    assert peak_tag in peak_tags and peak_tag_2 in peak_tags
    assert len(peak_tags) == 2

    # Get d-reference of peak 1 to check
    peak_info = verify_project_file.read_peak_parameters(peak_tag)
    verify_d_ref = peak_info.get_d_reference()
    gold_ref_d = np.array([test_ref_d] * 3)
    np.testing.assert_allclose(verify_d_ref, gold_ref_d)

    # Get d-reference of peak 2 to check
    peak_info2 = verify_project_file.read_peak_parameters(peak_tag_2)
    verify_d_ref_2 = peak_info2.get_d_reference()
    np.testing.assert_allclose(verify_d_ref_2, test_ref_d2)

    # Clean
    os.remove(test_file_name)

    return
Example #3
0
def test_peak_fitting_result_io():
    """Test peak fitting result's writing and reading

    Returns
    -------

    """
    # Generate a unique test file
    now = datetime.datetime.now()
    test_file_name = 'test_peak_io_{}.hdf'.format(now.toordinal())

    # Generate a HiDRA project file
    test_project_file = HidraProjectFile(test_file_name,
                                         HidraProjectFileMode.OVERWRITE)

    # Create a ND array for output parameters
    param_names = PeakShape.PSEUDOVOIGT.native_parameters + BackgroundFunction.LINEAR.native_parameters
    data_type = list()
    for param_name in param_names:
        data_type.append((param_name, np.float32))
    test_error_array = np.zeros(3, dtype=data_type)
    test_params_array = np.zeros(3, dtype=data_type)

    for i in range(3):
        # sub run
        for j, par_name in enumerate(param_names):
            test_params_array[par_name][i] = 2**i + 0.1 * 3**j
            test_error_array[par_name][i] = np.sqrt(
                abs(test_params_array[par_name][i]))
    # END-FOR
    chi2_array = np.array([0.323, 0.423, 0.523])

    # Add test data to output
    peaks = PeakCollection('test fake', PeakShape.PSEUDOVOIGT,
                           BackgroundFunction.LINEAR)
    peaks.set_peak_fitting_values(np.array([1, 2, 3]), test_params_array,
                                  test_error_array, chi2_array)

    test_project_file.write_peak_parameters(peaks)

    test_project_file.save(False)

    # Check
    assert os.path.exists(test_file_name), 'Test project file for peak fitting result {} cannot be found.' \
                                           ''.format(test_file_name)
    print('[INFO] Peak parameter test project file: {}'.format(test_file_name))

    # Import
    verify_project_file = HidraProjectFile(test_file_name,
                                           HidraProjectFileMode.READONLY)

    # get the tags
    peak_tags = verify_project_file.read_peak_tags()
    assert 'test fake' in peak_tags
    assert len(peak_tags) == 1

    # get the parameter of certain
    peak_info = verify_project_file.read_peak_parameters('test fake')

    # peak profile
    assert peak_info.peak_profile == str(PeakShape.PSEUDOVOIGT)
    assert peak_info.background_type == str(BackgroundFunction.LINEAR)

    # sub runs
    assert np.allclose(peak_info.sub_runs, np.array([1, 2, 3]))

    # parameter values
    # print('DEBUG:\n  Expected: {}\n  Found: {}'.format(test_params_array, peak_info[3]))
    peak_values, peak_errors = peak_info.get_native_params()
    assert_allclose_structured_numpy_arrays(test_params_array, peak_values)
    # np.testing.assert_allclose(peak_info[3], test_params_array, atol=1E-12)

    # parameter values
    # assert np.allclose(peak_info[4], test_error_array, 1E-12)
    assert_allclose_structured_numpy_arrays(test_error_array, peak_errors)

    # Clean
    os.remove(test_file_name)

    return