Example #1
0
    def test_Prediction(self):
        coords =np.array(self.coords)
        index = np.arange(len(self.y))
        test = index[-10:]

        X_test = self.X[test]
        coords_test = list(coords[test])


        model = GWR(self.coords, self.y, self.X, 93, family=Gaussian(),
                fixed=False, kernel='bisquare')
        results = model.predict(coords_test, X_test)
        
        params = np.array([22.77198, -0.10254,    -0.215093,   -0.01405,
            19.10531,    -0.094177,   -0.232529,   0.071913,
            19.743421,   -0.080447,   -0.30893,    0.083206,
            17.505759,   -0.078919,   -0.187955,   0.051719,
            27.747402,   -0.165335,   -0.208553,   0.004067,
            26.210627,   -0.138398,   -0.360514,   0.072199,
            18.034833,   -0.077047,   -0.260556,   0.084319,
            28.452802,   -0.163408,   -0.14097,    -0.063076,
            22.353095,   -0.103046,   -0.226654,   0.002992,
            18.220508,   -0.074034,   -0.309812,   0.108636]).reshape((10,4))
        np.testing.assert_allclose(params, results.params, rtol=1e-03)

        bse = np.array([2.080166,    0.021462,    0.102954,    0.049627,
            2.536355,    0.022111,    0.123857,    0.051917,
            1.967813,    0.019716,    0.102562,    0.054918,
            2.463219,    0.021745,    0.110297,    0.044189,
            1.556056,    0.019513,    0.12764,     0.040315,
            1.664108,    0.020114,    0.131208,    0.041613,
            2.5835,      0.021481,    0.113158,    0.047243,
            1.709483,    0.019752,    0.116944,    0.043636,
            1.958233,    0.020947,    0.09974,     0.049821,
            2.276849,    0.020122,    0.107867,    0.047842]).reshape((10,4))
        np.testing.assert_allclose(bse, results.bse, rtol=1e-03)

        tvalues = np.array([10.947193,   -4.777659,   -2.089223,   -0.283103,
            7.532584,    -4.259179,   -1.877395,   1.385161,
            10.033179,   -4.080362,   -3.012133,   1.515096,
            7.106862,    -3.629311,   -1.704079,   1.17042,
            17.831878,   -8.473156,   -1.633924,   0.100891,
            15.750552,   -6.880725,   -2.74765,    1.734978,
            6.980774,    -3.586757,   -2.302575,   1.784818,
            16.644095,   -8.273001,   -1.205451,   -1.445501,
            11.414933,   -4.919384,   -2.272458,   0.060064,
            8.00251, -3.679274,   -2.872176,   2.270738]).reshape((10,4))
        np.testing.assert_allclose(tvalues, results.tvalues, rtol=1e-03)

        localR2 = np.array([[ 0.53068693],
                            [ 0.59582647],
                            [ 0.59700925],
                            [ 0.45769954],
                            [ 0.54634509],
                            [ 0.5494828 ],
                            [ 0.55159604],
                            [ 0.55634237],
                            [ 0.53903842],
                            [ 0.55884954]])
        np.testing.assert_allclose(localR2, results.localR2, rtol=1e-05)

        predictions = np.array([[ 10.51695514],
                                [  9.93321992],
                                [  8.92473026],
                                [  5.47350219],
                                [  8.61756585],
                                [ 12.8141851 ],
                                [  5.55619405],
                                [ 12.63004172],
                                [  8.70638418],
                                [  8.17582599]])
        np.testing.assert_allclose(predictions, results.predictions, rtol=1e-05)
Example #2
0
    def test_Prediction(self):
        coords = np.array(self.coords)
        index = np.arange(len(self.y))
        test = index[-10:]

        X_test = self.X[test]
        coords_test = list(coords[test])

        model = GWR(self.coords,
                    self.y,
                    self.X,
                    93,
                    family=Gaussian(),
                    fixed=False,
                    kernel='bisquare')
        results = model.predict(coords_test, X_test)

        params = np.array([
            22.77198, -0.10254, -0.215093, -0.01405, 19.10531, -0.094177,
            -0.232529, 0.071913, 19.743421, -0.080447, -0.30893, 0.083206,
            17.505759, -0.078919, -0.187955, 0.051719, 27.747402, -0.165335,
            -0.208553, 0.004067, 26.210627, -0.138398, -0.360514, 0.072199,
            18.034833, -0.077047, -0.260556, 0.084319, 28.452802, -0.163408,
            -0.14097, -0.063076, 22.353095, -0.103046, -0.226654, 0.002992,
            18.220508, -0.074034, -0.309812, 0.108636
        ]).reshape((10, 4))
        np.testing.assert_allclose(params, results.params, rtol=1e-03)

        bse = np.array([
            2.080166, 0.021462, 0.102954, 0.049627, 2.536355, 0.022111,
            0.123857, 0.051917, 1.967813, 0.019716, 0.102562, 0.054918,
            2.463219, 0.021745, 0.110297, 0.044189, 1.556056, 0.019513,
            0.12764, 0.040315, 1.664108, 0.020114, 0.131208, 0.041613, 2.5835,
            0.021481, 0.113158, 0.047243, 1.709483, 0.019752, 0.116944,
            0.043636, 1.958233, 0.020947, 0.09974, 0.049821, 2.276849,
            0.020122, 0.107867, 0.047842
        ]).reshape((10, 4))
        np.testing.assert_allclose(bse, results.bse, rtol=1e-03)

        tvalues = np.array([
            10.947193, -4.777659, -2.089223, -0.283103, 7.532584, -4.259179,
            -1.877395, 1.385161, 10.033179, -4.080362, -3.012133, 1.515096,
            7.106862, -3.629311, -1.704079, 1.17042, 17.831878, -8.473156,
            -1.633924, 0.100891, 15.750552, -6.880725, -2.74765, 1.734978,
            6.980774, -3.586757, -2.302575, 1.784818, 16.644095, -8.273001,
            -1.205451, -1.445501, 11.414933, -4.919384, -2.272458, 0.060064,
            8.00251, -3.679274, -2.872176, 2.270738
        ]).reshape((10, 4))
        np.testing.assert_allclose(tvalues, results.tvalues, rtol=1e-03)

        localR2 = np.array([[0.53068693], [0.59582647], [0.59700925],
                            [0.45769954], [0.54634509], [0.5494828],
                            [0.55159604], [0.55634237], [0.53903842],
                            [0.55884954]])
        np.testing.assert_allclose(localR2, results.localR2, rtol=1e-05)

        predictions = np.array([[10.51695514], [9.93321992], [8.92473026],
                                [5.47350219], [8.61756585], [12.8141851],
                                [5.55619405], [12.63004172], [8.70638418],
                                [8.17582599]])
        np.testing.assert_allclose(predictions,
                                   results.predictions,
                                   rtol=1e-05)
p = X_train.shape[1]

coords_train = X_train[:, 0:2]
X_train = X_train[:, 2:p + 2]

coords_test = X_test[:, 0:2]
X_test = X_test[:, 2:p + 2]

model_oos = GWR(coords_train,
                y_train,
                X_train,
                12,
                family=Gaussian(),
                fixed=False,
                kernel='gaussian')
results_oos = model_oos.predict(coords_test, X_test)
var_os = np.var(y_test - results_oos.predictions)

model_is = GWR(coords_train,
               y_train,
               X_train,
               12,
               family=Gaussian(),
               fixed=False,
               kernel='gaussian')
results_is = model_is.predict(coords_train, X_train)
var_is = np.var(y_train - results_is.predictions)

rmse_is = np.sqrt(np.mean((y_train - results_is.predictions)**2))
lik_is = np.sum(gaussian(y_train, results_is.predictions, var_is))
rmse_oos = np.sqrt(np.mean((y_test - results_oos.predictions)**2))