def setUp(self): data = south() data['n_samples'] = 0 np.random.seed(TEST_SEED) self.trace = Trace.from_csv(FULL_PATH + '/data/south_mvcm_5000', multi=True) self.single_trace = Trace.from_csv(FULL_PATH + '/data/south_mvcm_5000_0.csv') self.size_known = json.load(open(FULL_PATH + '/data/effective_size.json', 'r'))
def setUp(self): data = south() data['n_samples'] = 0 np.random.seed(TEST_SEED) self.trace = Trace.from_csv(FULL_PATH + '/data/south_mvcm_5000', multi=True) self.single_trace = Trace.from_csv(FULL_PATH + '/data/south_mvcm_5000_0.csv') self.geweke_known = json.load(open(FULL_PATH + '/data/geweke.json'))
def setUp(self): data = south() data['n_samples'] = 0 np.random.seed(TEST_SEED) test_methods = ['obm', 'bm', 'bartlett', 'hanning', 'tukey'] self.trace = Trace.from_csv(FULL_PATH + '/data/south_mvcm_5000', multi=True) self.single_trace = Trace.from_csv(FULL_PATH + '/data/south_mvcm_5000_0.csv') self.bm = json.load(open(FULL_PATH + '/data/mcse_bm.json', 'r')) self.obm = json.load(open(FULL_PATH + '/data/mcse_obm.json', 'r')) self.tukey = json.load(open(FULL_PATH + '/data/mcse_hanning.json', 'r')) self.bartlett = json.load(open(FULL_PATH + '/data/mcse_bartlett.json', 'r')) self.hanning = self.tukey
def build(): models = [] for cand in M.__dict__.values(): if isinstance(cand, CLASSTYPES): if issubclass(cand, Sampler_Mixin): models.append(cand) for model in models: print('starting {}'.format(model)) env = south() del env['M'] run_with_seed(model, env=env, seed=TEST_SEED, fprefix=FULL_PATH + '/data/') return os.listdir(FULL_PATH + '/data/')
def setUp(self): data = south() data['n_samples'] = 0 with open(FULL_PATH + '/data/psrf_noburn.json', 'r') as noburn: self.noburn = json.load(noburn) with open(FULL_PATH + '/data/psrf_brooks.json', 'r') as brooks: self.known_brooks = json.load(brooks) with open(FULL_PATH + '/data/psrf_gr.json', 'r') as gr: self.known_gr = json.load(gr) np.random.seed(TEST_SEED) self.trace = Trace.from_csv(FULL_PATH + '/data/south_mvcm_5000', multi=True) self.mockmodel = Hashmap(trace=self.trace)
def run_with_seed(cls, env=utils.south(), seed=TEST_SEED, fprefix=''): fname = str(cls).strip("'<>'").split('.')[-1].lower() try: env['n_samples'] = 0 model = cls(**env) except TypeError: reduced = copy.deepcopy(env) del reduced['M'] del reduced['W'] reduced['n_samples'] = 0 model = cls(**reduced) np.random.seed(TEST_SEED) model.draw() model.trace.to_df().to_csv(fprefix + fname + '.csv', index=False)
def run_with_seed(cls, env=utils.south(), seed=TEST_SEED, fprefix = ''): fname = str(cls).strip("'<>'").split('.')[-1].lower() try: env['n_samples'] = 0 model = cls(**env) except TypeError: reduced = copy.deepcopy(env) del reduced['M'] del reduced['W'] reduced['n_samples'] = 0 model = cls(**reduced) np.random.seed(TEST_SEED) model.draw() model.trace.to_df().to_csv(fprefix + fname + '.csv', index=False)
def setUp(self): data = south() data['n_samples'] = 0 np.random.seed(TEST_SEED) test_methods = ['obm', 'bm', 'bartlett', 'hanning', 'tukey'] self.trace = Trace.from_csv(FULL_PATH + '/data/south_mvcm_5000', multi=True) self.single_trace = Trace.from_csv(FULL_PATH + '/data/south_mvcm_5000_0.csv') self.bm = json.load(open(FULL_PATH + '/data/mcse_bm.json', 'r')) self.obm = json.load(open(FULL_PATH + '/data/mcse_obm.json', 'r')) self.tukey = json.load(open(FULL_PATH + '/data/mcse_hanning.json', 'r')) self.bartlett = json.load( open(FULL_PATH + '/data/mcse_bartlett.json', 'r')) self.hanning = self.tukey
def build(): data = south() del data["W"] del data["M"] model = pysal.model.spvcm.both.MVCM(**data, n_samples=0) np.random.seed(TEST_SEED) print("starting South 5000, njobs=4") model.sample(5000, n_jobs=4) print("starting PSRF") known_brooks = psrf(model) known_gr = psrf(model, method="original") import json with open(FULL_PATH + "/data/" + "psrf_brooks.json", "w") as brooks: json.dump(known_brooks, brooks) with open(FULL_PATH + "/data/" + "psrf_gr.json", "w") as gr: json.dump(known_gr, gr) for i, method in enumerate(["bm", "obm", "bartlett", "hanning"]): known_mcse = mcse(model, varnames=["Tau2"], method=method) with open( FULL_PATH + "/data/" + "mcse_{}.json".format(i, method), "w" ) as mcse_file: json.dump(known_mcse, mcse_file) known_hpd = hpd_interval(model, varnames=["Sigma2"]) with open(FULL_PATH + "/data/" + "hpd_interval.json", "w") as hpd_file: json.dump(known_hpd, hpd_file) known_size = effective_size(model, varnames=["Tau2"], use_R=False) with open(FULL_PATH + "/data/" + "effective_size.json", "w") as size_file: json.dump(known_size, size_file) known_geweke = geweke(model, varnames=["Sigma2"]) known_geweke = [{k: v.tolist() for k, v in known.items()} for known in known_geweke] with open(FULL_PATH + "/data/" + "geweke.json", "w") as geweke_file: json.dump(known_geweke, geweke_file) model.trace.to_csv(FULL_PATH + "/data/" + "south_mvcm_5000.csv") return [ FULL_PATH + "/data/" + "psrf_{}.json".format(k) for k in ["brooks", "gr"] ] + [FULL_PATH + "/data/south_mvcm_5000.csv"]
def build(): data = south() del data['W'] del data['M'] model = pysal.model.spvcm.both.MVCM(**data, n_samples=0) np.random.seed(TEST_SEED) print('starting South 5000, njobs=4') model.sample(5000, n_jobs=4) print('starting PSRF') known_brooks = psrf(model) known_gr = psrf(model, method='original') import json with open(FULL_PATH + '/data/' + 'psrf_brooks.json', 'w') as brooks: json.dump(known_brooks, brooks) with open(FULL_PATH + '/data/' + 'psrf_gr.json', 'w') as gr: json.dump(known_gr, gr) for i, method in enumerate(['bm', 'obm', 'bartlett', 'hanning']): known_mcse = mcse(model, varnames=['Tau2'], method=method) with open(FULL_PATH + '/data/' + 'mcse_{}.json'.format(i, method), 'w') as mcse_file: json.dump(known_mcse, mcse_file) known_hpd = hpd_interval(model, varnames=['Sigma2']) with open(FULL_PATH + '/data/' + 'hpd_interval.json', 'w') as hpd_file: json.dump(known_hpd, hpd_file) known_size = effective_size(model, varnames=['Tau2'], use_R=False) with open(FULL_PATH + '/data/' + 'effective_size.json', 'w') as size_file: json.dump(known_size, size_file) known_geweke = geweke(model, varnames=['Sigma2']) known_geweke = [{k: v.tolist() for k, v in known.items()} for known in known_geweke] with open(FULL_PATH + '/data/' + 'geweke.json', 'w') as geweke_file: json.dump(known_geweke, geweke_file) model.trace.to_csv(FULL_PATH + '/data/' + 'south_mvcm_5000.csv') return ([ FULL_PATH + '/data/' + 'psrf_{}.json'.format(k) for k in ['brooks', 'gr'] ] + [FULL_PATH + '/data/south_mvcm_5000.csv'])
def build(): data = south() del data['W'] del data['M'] model = pysal.model.spvcm.both.MVCM(**data, n_samples=0) np.random.seed(TEST_SEED) print('starting South 5000, njobs=4') model.sample(5000,n_jobs=4) print('starting PSRF') known_brooks = psrf(model) known_gr = psrf(model, method='original') import json with open(FULL_PATH + '/data/' + 'psrf_brooks.json', 'w') as brooks: json.dump(known_brooks, brooks) with open(FULL_PATH + '/data/' + 'psrf_gr.json', 'w') as gr: json.dump(known_gr, gr) for i, method in enumerate(['bm', 'obm', 'bartlett', 'hanning']): known_mcse = mcse(model, varnames=['Tau2'], method=method) with open(FULL_PATH + '/data/' + 'mcse_{}.json'.format(i,method), 'w') as mcse_file: json.dump(known_mcse, mcse_file) known_hpd = hpd_interval(model, varnames=['Sigma2']) with open(FULL_PATH + '/data/' + 'hpd_interval.json', 'w') as hpd_file: json.dump(known_hpd, hpd_file) known_size = effective_size(model, varnames=['Tau2'], use_R=False) with open(FULL_PATH + '/data/' + 'effective_size.json', 'w') as size_file: json.dump(known_size, size_file) known_geweke = geweke(model, varnames=['Sigma2']) known_geweke = [{k:v.tolist() for k,v in known.items()} for known in known_geweke] with open(FULL_PATH + '/data/' + 'geweke.json', 'w') as geweke_file: json.dump(known_geweke, geweke_file) model.trace.to_csv(FULL_PATH + '/data/' + 'south_mvcm_5000.csv') return ([FULL_PATH + '/data/' + 'psrf_{}.json'.format(k) for k in ['brooks', 'gr']] + [FULL_PATH + '/data/south_mvcm_5000.csv'])
def setUp(self): data = south() data['n_samples'] = 0 np.random.seed(TEST_SEED) self.trace = Trace.from_csv(FULL_PATH + '/data/south_mvcm_5000', multi=True)
def build_self(self): super(Model_Mixin, self).__init__() self.inputs = utils.south() self.__dict__.update(self.inputs) self.ignore_shape = False self.squeeze = True