def test_wta(p_intra, p_inter, inputs, single_inh_pop=False, muscimol_amount=0 * nS, injection_site=0): wta_params = default_params() wta_params.p_b_e = 0.1 wta_params.p_x_e = 0.1 wta_params.p_e_e = p_intra wta_params.p_e_i = p_inter wta_params.p_i_i = p_intra wta_params.p_i_e = p_inter input_freq = np.zeros(2) for i in range(2): input_freq[i] = float(inputs[i]) * Hz run_wta(wta_params, 2, input_freq, 1.0 * second, record_lfp=False, record_neuron_state=True, plot_output=True, single_inh_pop=single_inh_pop, muscimol_amount=muscimol_amount, injection_site=injection_site)
def get_prob(x, output_dir): num_groups = 2 trial_duration = 1 * second input_sum = 40.0 num_trials = 5 num_extra_trials = 10 wta_params = default_params() wta_params.p_b_e = 0.1 wta_params.p_x_e = 0.05 wta_params.p_e_e = x[0] wta_params.p_e_i = x[1] wta_params.p_i_i = x[2] wta_params.p_i_e = x[3] file_desc='wta.groups.%d.duration.%0.3f.p_b_e.%0.3f.p_x_e.%0.3f.p_e_e.%0.3f.p_e_i.%0.3f.p_i_i.%0.3f.p_i_e.%0.3f' % \ (num_groups, trial_duration, wta_params.p_b_e, wta_params.p_x_e, wta_params.p_e_e, wta_params.p_e_i, wta_params.p_i_i, wta_params.p_i_e) file_prefix = os.path.join(output_dir, file_desc) num_example_trials = [0, 0] for trial in range(num_trials): inputs = np.zeros(2) inputs[0] = np.random.random() * input_sum inputs[1] = input_sum - inputs[0] if inputs[0] > inputs[1]: num_example_trials[0] += 1 else: num_example_trials[1] += 1 if trial == num_trials - 1: if num_example_trials[0] == 0: inputs[ 0] = input_sum * 0.5 + np.random.random() * input_sum * 0.5 inputs[1] = input_sum - inputs[0] num_example_trials[0] += 1 elif num_example_trials[1] == 0: inputs[ 1] = input_sum * 0.5 + np.random.random() * input_sum * 0.5 inputs[0] = input_sum - inputs[1] num_example_trials[1] += 1 output_file = '%s.trial.%d.h5' % (file_prefix, trial) run_wta(wta_params, num_groups, inputs, trial_duration, output_file=output_file, record_lfp=False, record_voxel=False, record_neuron_state=False, record_spikes=False, record_firing_rate=True, record_inputs=True, single_inh_pop=False) auc = get_auc(file_prefix, num_trials, num_extra_trials, num_groups) return auc
def get_prob(x, output_dir): num_groups=2 trial_duration=1*second input_sum=40.0 num_trials=5 num_extra_trials=10 wta_params=default_params() wta_params.p_b_e=0.1 wta_params.p_x_e=0.05 wta_params.p_e_e=x[0] wta_params.p_e_i=x[1] wta_params.p_i_i=x[2] wta_params.p_i_e=x[3] file_desc='wta.groups.%d.duration.%0.3f.p_b_e.%0.3f.p_x_e.%0.3f.p_e_e.%0.3f.p_e_i.%0.3f.p_i_i.%0.3f.p_i_e.%0.3f' % \ (num_groups, trial_duration, wta_params.p_b_e, wta_params.p_x_e, wta_params.p_e_e, wta_params.p_e_i, wta_params.p_i_i, wta_params.p_i_e) file_prefix=os.path.join(output_dir,file_desc) num_example_trials=[0,0] for trial in range(num_trials): inputs=np.zeros(2) inputs[0]=np.random.random()*input_sum inputs[1]=input_sum-inputs[0] if inputs[0]>inputs[1]: num_example_trials[0]+=1 else: num_example_trials[1]+=1 if trial==num_trials-1: if num_example_trials[0]==0: inputs[0]=input_sum*0.5+np.random.random()*input_sum*0.5 inputs[1]=input_sum-inputs[0] num_example_trials[0]+=1 elif num_example_trials[1]==0: inputs[1]=input_sum*0.5+np.random.random()*input_sum*0.5 inputs[0]=input_sum-inputs[1] num_example_trials[1]+=1 output_file='%s.trial.%d.h5' % (file_prefix,trial) run_wta(wta_params, num_groups, inputs, trial_duration, output_file=output_file, record_lfp=False, record_voxel=False, record_neuron_state=False, record_spikes=False, record_firing_rate=True, record_inputs=True, single_inh_pop=False) auc=get_auc(file_prefix, num_trials, num_extra_trials, num_groups) return auc
def test_wta(p_intra, p_inter, inputs, single_inh_pop=False, muscimol_amount=0*nS, injection_site=0): wta_params=default_params() wta_params.p_b_e=0.1 wta_params.p_x_e=0.1 wta_params.p_e_e=p_intra wta_params.p_e_i=p_inter wta_params.p_i_i=p_intra wta_params.p_i_e=p_inter input_freq=np.zeros(2) for i in range(2): input_freq[i]=float(inputs[i])*Hz run_wta(wta_params, 2, input_freq, 1.0*second, record_lfp=False, record_neuron_state=True, plot_output=True, single_inh_pop=single_inh_pop, muscimol_amount=muscimol_amount, injection_site=injection_site)
def test_contrast(p_intra, p_inter, num_trials, data_path, muscimol_amount=0*nS, injection_site=0, single_inh_pop=False): num_groups=2 trial_duration=1.0*second wta_params=default_params() wta_params.p_b_e=0.1 wta_params.p_x_e=0.1 wta_params.p_e_e=p_intra wta_params.p_e_i=p_inter wta_params.p_i_i=p_intra wta_params.p_i_e=p_inter input_sum=40.0 contrast_range=[0.0, 0.0625, 0.125, 0.25, 0.5, 1.0] trial_contrast=np.zeros([len(contrast_range)*num_trials,1]) trial_max_bold=np.zeros(len(contrast_range)*num_trials) trial_max_exc_bold=np.zeros(len(contrast_range)*num_trials) for i,contrast in enumerate(contrast_range): print('Testing contrast %0.4f' % contrast) inputs=np.zeros(2) inputs[0]=(input_sum*(contrast+1.0)/2.0) inputs[1]=input_sum-inputs[0] for j in range(num_trials): print('Trial %d' % j) trial_contrast[i*num_trials+j]=contrast np.random.shuffle(inputs) input_freq=np.zeros(num_groups) for k in range(num_groups): input_freq[k]=float(inputs[k])*Hz file='wta.groups.%d.duration.%0.3f.p_b_e.%0.3f.p_x_e.%0.3f.p_e_e.%0.3f.p_e_i.%0.3f.p_i_i.%0.3f.p_i_e.%0.3f.contrast.%0.4f.trial.%d.h5' %\ (num_groups, trial_duration, wta_params.p_b_e, wta_params.p_x_e, wta_params.p_e_e, wta_params.p_e_i, wta_params.p_i_i, wta_params.p_i_e, contrast, j) out_file=None if data_path is not None: out_file=os.path.join(data_path,file) wta_monitor=run_wta(wta_params, num_groups, input_freq, trial_duration, record_neuron_state=True, output_file=out_file, muscimol_amount=muscimol_amount, injection_site=injection_site, single_inh_pop=single_inh_pop) trial_max_bold[i*num_trials+j]=np.max(wta_monitor.voxel_monitor['y'].values) trial_max_exc_bold[i*num_trials+j]=np.max(wta_monitor.voxel_exc_monitor['y'].values) x_min=np.min(contrast_range) x_max=np.max(contrast_range) fig=plt.figure() clf=LinearRegression() clf.fit(trial_contrast,trial_max_bold) a=clf.coef_[0] b=clf.intercept_ plt.plot(trial_contrast, trial_max_bold, 'x') plt.plot([x_min,x_max],[a*x_min+b,a*x_max+b],'--') plt.xlabel('Input Contrast') plt.ylabel('Max BOLD') plt.show() fig=plt.figure() clf=LinearRegression() clf.fit(trial_contrast,trial_max_exc_bold) a=clf.coef_[0] b=clf.intercept_ plt.plot(trial_contrast, trial_max_exc_bold, 'o') plt.plot([x_min,x_max],[a*x_min+b,a*x_max+b],'--') plt.xlabel('Input Contrast') plt.ylabel('Max BOLD (exc only)') plt.show()
def test_contrast_lesion(p_intra, p_inter, trial_numbers, data_path, muscimol_amount=0*nS, injection_site=0, single_inh_pop=False, plot_summary=True): num_groups=2 trial_duration=1.0*second wta_params=default_params() wta_params.p_b_e=0.1 wta_params.p_x_e=0.1 wta_params.p_e_e=p_intra wta_params.p_e_i=p_inter wta_params.p_i_i=p_intra wta_params.p_i_e=p_inter input_sum=40.0 contrast_range=[0.0, 0.0625, 0.125, 0.25, 0.5, 1.0] num_trials=len(trial_numbers) trial_contrast=np.zeros([len(contrast_range)*num_trials,1]) trial_max_bold=np.zeros(len(contrast_range)*num_trials) trial_max_exc_bold=np.zeros(len(contrast_range)*num_trials) for i,contrast in enumerate(contrast_range): print('Testing contrast %0.4f' % contrast) inputs=np.zeros(2) inputs[0]=(input_sum*(contrast+1.0)/2.0) inputs[1]=input_sum-inputs[0] for j,trial_idx in enumerate(trial_numbers): print('Trial %d' % trial_idx) trial_contrast[i*num_trials+j]=contrast np.random.shuffle(inputs) input_freq=np.zeros(num_groups) for k in range(num_groups): input_freq[k]=float(inputs[k])*Hz file='wta.groups.%d.duration.%0.3f.p_b_e.%0.3f.p_x_e.%0.3f.p_e_e.%0.3f.p_e_i.%0.3f.p_i_i.%0.3f.p_i_e.%0.3f.contrast.%0.4f.trial.%d.h5' %\ (num_groups, trial_duration, wta_params.p_b_e, wta_params.p_x_e, wta_params.p_e_e, wta_params.p_e_i, wta_params.p_i_i, wta_params.p_i_e, contrast, trial_idx) out_file=None if not data_path is None: out_file=os.path.join(data_path,file) wta_monitor=run_wta(wta_params, num_groups, input_freq, trial_duration, output_file=out_file, single_inh_pop=single_inh_pop, record_spikes=False, record_lfp=False, save_summary_only=True) trial_max_bold[i*num_trials+j]=np.max(wta_monitor.voxel_monitor['y'].values) trial_max_exc_bold[i*num_trials+j]=np.max(wta_monitor.voxel_exc_monitor['y'].values) lesioned_trial_max_bold=np.zeros(len(contrast_range)*num_trials) lesioned_trial_max_exc_bold=np.zeros(len(contrast_range)*num_trials) for i,contrast in enumerate(contrast_range): print('Testing contrast %0.4f' % contrast) inputs=np.zeros(2) inputs[0]=(input_sum*(contrast+1.0)/2.0) inputs[1]=input_sum-inputs[0] for j,trial_idx in enumerate(trial_numbers): print('Trial %d' % j) trial_contrast[i*num_trials+j]=contrast np.random.shuffle(inputs) input_freq=np.zeros(num_groups) for k in range(num_groups): input_freq[k]=float(inputs[k])*Hz file='lesioned.wta.groups.%d.duration.%0.3f.p_b_e.%0.3f.p_x_e.%0.3f.p_e_e.%0.3f.p_e_i.%0.3f.p_i_i.%0.3f.p_i_e.%0.3f.contrast.%0.4f.trial.%d.h5' %\ (num_groups, trial_duration, wta_params.p_b_e, wta_params.p_x_e, wta_params.p_e_e, wta_params.p_e_i, wta_params.p_i_i, wta_params.p_i_e, contrast, trial_idx) out_file=None if not data_path is None: out_file=os.path.join(data_path,file) wta_monitor=run_wta(wta_params, num_groups, input_freq, trial_duration, output_file=out_file, muscimol_amount=muscimol_amount, injection_site=injection_site, single_inh_pop=single_inh_pop, record_spikes=False, record_lfp=False, save_summary_only=True) lesioned_trial_max_bold[i*num_trials+j]=np.max(wta_monitor.voxel_monitor['y'].values) lesioned_trial_max_exc_bold[i*num_trials+j]=np.max(wta_monitor.voxel_exc_monitor['y'].values) if plot_summary: x_min=np.min(contrast_range) x_max=np.max(contrast_range) fig=plt.figure() control_clf=LinearRegression() control_clf.fit(trial_contrast,trial_max_bold) control_a=control_clf.coef_[0] control_b=control_clf.intercept_ lesion_clf=LinearRegression() lesion_clf.fit(trial_contrast,lesioned_trial_max_bold) lesion_a=lesion_clf.coef_[0] lesion_b=lesion_clf.intercept_ plt.plot(trial_contrast, trial_max_bold, 'xb') plt.plot(trial_contrast, lesioned_trial_max_bold, 'xr') plt.plot([x_min,x_max],[control_a*x_min+control_b,control_a*x_max+control_b],'--b',label='Control') plt.plot([x_min,x_max],[lesion_a*x_min+lesion_b,lesion_a*x_max+lesion_b],'--r',label='Lesioned') plt.xlabel('Input Contrast') plt.ylabel('Max BOLD') plt.legend() plt.show() fig=plt.figure() control_exc_clf=LinearRegression() control_exc_clf.fit(trial_contrast,trial_max_exc_bold) control_exc_a=control_exc_clf.coef_[0] control_exc_b=control_exc_clf.intercept_ lesion_exc_clf=LinearRegression() lesion_exc_clf.fit(trial_contrast,lesioned_trial_max_exc_bold) lesion_exc_a=lesion_exc_clf.coef_[0] lesion_exc_b=lesion_exc_clf.intercept_ plt.plot(trial_contrast, trial_max_exc_bold, 'ob') plt.plot(trial_contrast, lesioned_trial_max_exc_bold, 'or') plt.plot([x_min,x_max],[control_exc_a*x_min+control_exc_b,control_exc_a*x_max+control_exc_b],'--b',label='Control') plt.plot([x_min,x_max],[lesion_exc_a*x_min+lesion_exc_b,lesion_exc_a*x_max+lesion_exc_b],'--r',label='Lesioned') plt.xlabel('Input Contrast') plt.ylabel('Max BOLD (exc only)') plt.legend() plt.show()
def run_rl_simulation(mat_file, alpha=0.4, beta=5.0, background_freq=None, p_dcs=0*pA, i_dcs=0*pA, dcs_start_time=0*ms, output_file=None): mat = scipy.io.loadmat(mat_file) prob_idx=-1 mags_idx=-1 for idx,(dtype,o) in enumerate(mat['store']['dat'][0][0].dtype.descr): if dtype=='probswalk': prob_idx=idx elif dtype=='mags': mags_idx=idx prob_walk=mat['store']['dat'][0][0][0][0][prob_idx] mags=mat['store']['dat'][0][0][0][0][mags_idx] prob_walk=prob_walk.astype(np.float32, copy=False) mags=mags.astype(np.float32, copy=False) mags /= 100.0 wta_params=default_params() wta_params.input_var=0*Hz sim_params=simulation_params() sim_params.p_dcs=p_dcs sim_params.i_dcs=i_dcs sim_params.dcs_start_time=dcs_start_time exp_rew=np.array([0.5, 0.5]) if background_freq is None: background_freq=(beta-161.08)/-.17 wta_params.background_freq=background_freq trials=prob_walk.shape[1] sim_params.ntrials=trials vals=np.zeros(prob_walk.shape) choice=np.zeros(trials) rew=np.zeros(trials) rts=np.zeros(trials) inputs=np.zeros(prob_walk.shape) if output_file is not None: f = h5py.File(output_file, 'w') f.attrs['alpha']=alpha f.attrs['beta']=beta f.attrs['mat_file']=mat_file f_sim_params=f.create_group('sim_params') for attr, value in sim_params.iteritems(): f_sim_params.attrs[attr] = value f_network_params=f.create_group('network_params') for attr, value in wta_params.iteritems(): f_network_params.attrs[attr] = value f_pyr_params=f.create_group('pyr_params') for attr, value in pyr_params.iteritems(): f_pyr_params.attrs[attr] = value f_inh_params=f.create_group('inh_params') for attr, value in inh_params.iteritems(): f_inh_params.attrs[attr] = value for trial in range(sim_params.ntrials): print('Trial %d' % trial) vals[:,trial]=exp_rew ev=vals[:,trial]*mags[:,trial] inputs[0,trial]=ev[0] inputs[1,trial]=ev[1] inputs[:,trial]=40.0+40.0*inputs[:,trial] trial_monitor=run_wta(wta_params, inputs[:,trial], sim_params, record_lfp=False, record_voxel=False, record_neuron_state=False, record_spikes=True, record_firing_rate=True, record_inputs=False, plot_output=False) e_rates = [] for i in range(wta_params.num_groups): e_rates.append(trial_monitor.monitors['excitatory_rate_%d' % i].smooth_rate(width=5 * ms, filter='gaussian')) i_rates = [trial_monitor.monitors['inhibitory_rate'].smooth_rate(width=5 * ms, filter='gaussian')] if output_file is not None: trial_group=f.create_group('trial %d' % trial) trial_group['e_rates'] = np.array(e_rates) trial_group['i_rates'] = np.array(i_rates) rt,decision_idx=get_response_time(e_rates, sim_params.stim_start_time, sim_params.stim_end_time, upper_threshold=wta_params.resp_threshold, lower_threshold=None, dt=sim_params.dt) reward=0.0 if decision_idx>=0 and np.random.random()<=prob_walk[decision_idx,trial]: reward=1.0 exp_rew[decision_idx]=(1.0-alpha)*exp_rew[decision_idx]+alpha*reward choice[trial]=decision_idx rts[trial]=rt rew[trial]=reward param_ests,prop_correct=fit_behavior(prob_walk, mags, rew, choice) if output_file is not None: f.attrs['est_alpha']=param_ests[0] f.attrs['est_beta']=param_ests[1] f.attrs['prop_correct']=prop_correct f['prob_walk']=prob_walk f['mags']=mags f['rew']=rew f['choice']=choice f['vals']=vals f['inputs']=inputs f['rts']=rts f.close()
def test_contrast(p_intra, p_inter, num_trials, data_path, muscimol_amount=0 * nS, injection_site=0, single_inh_pop=False): num_groups = 2 trial_duration = 1.0 * second wta_params = default_params() wta_params.p_b_e = 0.1 wta_params.p_x_e = 0.1 wta_params.p_e_e = p_intra wta_params.p_e_i = p_inter wta_params.p_i_i = p_intra wta_params.p_i_e = p_inter input_sum = 40.0 contrast_range = [0.0, 0.0625, 0.125, 0.25, 0.5, 1.0] trial_contrast = np.zeros([len(contrast_range) * num_trials, 1]) trial_max_bold = np.zeros(len(contrast_range) * num_trials) trial_max_exc_bold = np.zeros(len(contrast_range) * num_trials) for i, contrast in enumerate(contrast_range): print('Testing contrast %0.4f' % contrast) inputs = np.zeros(2) inputs[0] = (input_sum * (contrast + 1.0) / 2.0) inputs[1] = input_sum - inputs[0] for j in range(num_trials): print('Trial %d' % j) trial_contrast[i * num_trials + j] = contrast np.random.shuffle(inputs) input_freq = np.zeros(num_groups) for k in range(num_groups): input_freq[k] = float(inputs[k]) * Hz file='wta.groups.%d.duration.%0.3f.p_b_e.%0.3f.p_x_e.%0.3f.p_e_e.%0.3f.p_e_i.%0.3f.p_i_i.%0.3f.p_i_e.%0.3f.contrast.%0.4f.trial.%d.h5' %\ (num_groups, trial_duration, wta_params.p_b_e, wta_params.p_x_e, wta_params.p_e_e, wta_params.p_e_i, wta_params.p_i_i, wta_params.p_i_e, contrast, j) out_file = None if data_path is not None: out_file = os.path.join(data_path, file) wta_monitor = run_wta(wta_params, num_groups, input_freq, trial_duration, record_neuron_state=True, output_file=out_file, muscimol_amount=muscimol_amount, injection_site=injection_site, single_inh_pop=single_inh_pop) trial_max_bold[i * num_trials + j] = np.max( wta_monitor.voxel_monitor['y'].values) trial_max_exc_bold[i * num_trials + j] = np.max( wta_monitor.voxel_exc_monitor['y'].values) x_min = np.min(contrast_range) x_max = np.max(contrast_range) fig = plt.figure() clf = LinearRegression() clf.fit(trial_contrast, trial_max_bold) a = clf.coef_[0] b = clf.intercept_ plt.plot(trial_contrast, trial_max_bold, 'x') plt.plot([x_min, x_max], [a * x_min + b, a * x_max + b], '--') plt.xlabel('Input Contrast') plt.ylabel('Max BOLD') plt.show() fig = plt.figure() clf = LinearRegression() clf.fit(trial_contrast, trial_max_exc_bold) a = clf.coef_[0] b = clf.intercept_ plt.plot(trial_contrast, trial_max_exc_bold, 'o') plt.plot([x_min, x_max], [a * x_min + b, a * x_max + b], '--') plt.xlabel('Input Contrast') plt.ylabel('Max BOLD (exc only)') plt.show()
def test_contrast_lesion(p_intra, p_inter, trial_numbers, data_path, muscimol_amount=0 * nS, injection_site=0, single_inh_pop=False, plot_summary=True): num_groups = 2 trial_duration = 1.0 * second wta_params = default_params() wta_params.p_b_e = 0.1 wta_params.p_x_e = 0.1 wta_params.p_e_e = p_intra wta_params.p_e_i = p_inter wta_params.p_i_i = p_intra wta_params.p_i_e = p_inter input_sum = 40.0 contrast_range = [0.0, 0.0625, 0.125, 0.25, 0.5, 1.0] num_trials = len(trial_numbers) trial_contrast = np.zeros([len(contrast_range) * num_trials, 1]) trial_max_bold = np.zeros(len(contrast_range) * num_trials) trial_max_exc_bold = np.zeros(len(contrast_range) * num_trials) for i, contrast in enumerate(contrast_range): print('Testing contrast %0.4f' % contrast) inputs = np.zeros(2) inputs[0] = (input_sum * (contrast + 1.0) / 2.0) inputs[1] = input_sum - inputs[0] for j, trial_idx in enumerate(trial_numbers): print('Trial %d' % trial_idx) trial_contrast[i * num_trials + j] = contrast np.random.shuffle(inputs) input_freq = np.zeros(num_groups) for k in range(num_groups): input_freq[k] = float(inputs[k]) * Hz file='wta.groups.%d.duration.%0.3f.p_b_e.%0.3f.p_x_e.%0.3f.p_e_e.%0.3f.p_e_i.%0.3f.p_i_i.%0.3f.p_i_e.%0.3f.contrast.%0.4f.trial.%d.h5' %\ (num_groups, trial_duration, wta_params.p_b_e, wta_params.p_x_e, wta_params.p_e_e, wta_params.p_e_i, wta_params.p_i_i, wta_params.p_i_e, contrast, trial_idx) out_file = None if not data_path is None: out_file = os.path.join(data_path, file) wta_monitor = run_wta(wta_params, num_groups, input_freq, trial_duration, output_file=out_file, single_inh_pop=single_inh_pop, record_spikes=False, record_lfp=False, save_summary_only=True) trial_max_bold[i * num_trials + j] = np.max( wta_monitor.voxel_monitor['y'].values) trial_max_exc_bold[i * num_trials + j] = np.max( wta_monitor.voxel_exc_monitor['y'].values) lesioned_trial_max_bold = np.zeros(len(contrast_range) * num_trials) lesioned_trial_max_exc_bold = np.zeros(len(contrast_range) * num_trials) for i, contrast in enumerate(contrast_range): print('Testing contrast %0.4f' % contrast) inputs = np.zeros(2) inputs[0] = (input_sum * (contrast + 1.0) / 2.0) inputs[1] = input_sum - inputs[0] for j, trial_idx in enumerate(trial_numbers): print('Trial %d' % j) trial_contrast[i * num_trials + j] = contrast np.random.shuffle(inputs) input_freq = np.zeros(num_groups) for k in range(num_groups): input_freq[k] = float(inputs[k]) * Hz file='lesioned.wta.groups.%d.duration.%0.3f.p_b_e.%0.3f.p_x_e.%0.3f.p_e_e.%0.3f.p_e_i.%0.3f.p_i_i.%0.3f.p_i_e.%0.3f.contrast.%0.4f.trial.%d.h5' %\ (num_groups, trial_duration, wta_params.p_b_e, wta_params.p_x_e, wta_params.p_e_e, wta_params.p_e_i, wta_params.p_i_i, wta_params.p_i_e, contrast, trial_idx) out_file = None if not data_path is None: out_file = os.path.join(data_path, file) wta_monitor = run_wta(wta_params, num_groups, input_freq, trial_duration, output_file=out_file, muscimol_amount=muscimol_amount, injection_site=injection_site, single_inh_pop=single_inh_pop, record_spikes=False, record_lfp=False, save_summary_only=True) lesioned_trial_max_bold[i * num_trials + j] = np.max( wta_monitor.voxel_monitor['y'].values) lesioned_trial_max_exc_bold[i * num_trials + j] = np.max( wta_monitor.voxel_exc_monitor['y'].values) if plot_summary: x_min = np.min(contrast_range) x_max = np.max(contrast_range) fig = plt.figure() control_clf = LinearRegression() control_clf.fit(trial_contrast, trial_max_bold) control_a = control_clf.coef_[0] control_b = control_clf.intercept_ lesion_clf = LinearRegression() lesion_clf.fit(trial_contrast, lesioned_trial_max_bold) lesion_a = lesion_clf.coef_[0] lesion_b = lesion_clf.intercept_ plt.plot(trial_contrast, trial_max_bold, 'xb') plt.plot(trial_contrast, lesioned_trial_max_bold, 'xr') plt.plot( [x_min, x_max], [control_a * x_min + control_b, control_a * x_max + control_b], '--b', label='Control') plt.plot([x_min, x_max], [lesion_a * x_min + lesion_b, lesion_a * x_max + lesion_b], '--r', label='Lesioned') plt.xlabel('Input Contrast') plt.ylabel('Max BOLD') plt.legend() plt.show() fig = plt.figure() control_exc_clf = LinearRegression() control_exc_clf.fit(trial_contrast, trial_max_exc_bold) control_exc_a = control_exc_clf.coef_[0] control_exc_b = control_exc_clf.intercept_ lesion_exc_clf = LinearRegression() lesion_exc_clf.fit(trial_contrast, lesioned_trial_max_exc_bold) lesion_exc_a = lesion_exc_clf.coef_[0] lesion_exc_b = lesion_exc_clf.intercept_ plt.plot(trial_contrast, trial_max_exc_bold, 'ob') plt.plot(trial_contrast, lesioned_trial_max_exc_bold, 'or') plt.plot([x_min, x_max], [ control_exc_a * x_min + control_exc_b, control_exc_a * x_max + control_exc_b ], '--b', label='Control') plt.plot([x_min, x_max], [ lesion_exc_a * x_min + lesion_exc_b, lesion_exc_a * x_max + lesion_exc_b ], '--r', label='Lesioned') plt.xlabel('Input Contrast') plt.ylabel('Max BOLD (exc only)') plt.legend() plt.show()