def testing_geometric_error(trajectories, alpha, max_r, count): random.shuffle(trajectories) trajectories = trajectories[:30] print("got here") curr_r = alpha while curr_r < max_r: chord_l = math.sqrt(4 * alpha * curr_r - 2 * alpha * alpha) sample = [pyscan.grid_direc_kernel(pyscan.dp_compress(traj, alpha), chord_l, alpha) for traj in trajectories] for error, traj in zip(test_halfspace_error(trajectories, sample), trajectories): if error > alpha: print(error) print(traj) #print("Grid Direc Error {} {}".format(i, post_process_error(test_halfspace_error(trajectories, sample)))) sample = [pyscan.grid_kernel(pyscan.dp_compress(traj, alpha), alpha) for traj in trajectories] print("Grid : {}".format(post_process_error(test_halfspace_error(trajectories, sample)))) sample = [pyscan.halfplane_kernel(pyscan.dp_compress(traj, alpha), alpha) for traj in trajectories] print("Halfplane : {}".format( post_process_error(test_halfspace_error(trajectories, sample)))) sample = [pyscan.dp_compress(traj, alpha) for traj in trajectories] print("DP Error: {}".format(post_process_error(test_halfspace_error(trajectories, sample)))) sample = [pyscan.convex_hull([pyscan.Point(pt[0], pt[1], 1.0) for pt in traj]) for traj in trajectories] print("Hull Error: {}".format( post_process_error(test_halfspace_error(trajectories, sample)))) sample = [pyscan.even_sample_error(pyscan.dp_compress(traj, alpha), alpha) for traj in trajectories] print("Even : {}".format(post_process_error(test_halfspace_error(trajectories, sample))))
def testing(trajectories, alpha, max_r): curr_r = alpha while curr_r <= max_r: chord_l = math.sqrt(4 * alpha * curr_r - 2 * alpha * alpha) sample = [pyscan.grid_direc_kernel(pyscan.dp_compress(traj, alpha), chord_l, alpha) for traj in trajectories] pts = list(itertools.chain.from_iterable(sample)) print("Grid Directional radius = {0:.4f} : {1:.4f} ".format(curr_r * 3000, len(pts) / len(trajectories))) curr_r *= 2 sample = [pyscan.grid_kernel(pyscan.dp_compress(traj, alpha), alpha) for traj in trajectories] pts = list(itertools.chain.from_iterable(sample)) print("Grid : {0:.2f}".format(len(pts) / len(trajectories))) sample = [pyscan.halfplane_kernel(pyscan.dp_compress(traj, alpha), alpha) for traj in trajectories] pts = list(itertools.chain.from_iterable(sample)) print("Halfplane : {0:.2f}".format(len(pts) / len(trajectories))) sample = [pyscan.dp_compress(traj, alpha) for traj in trajectories] pts = list(itertools.chain.from_iterable(sample)) print("DP : {0:.2f}".format(len(pts) / len(trajectories))) # sample = [pyscan.lifting_kernel(pyscan.dp_compress(traj, alpha), .01) for traj in trajectories] # pts = list(itertools.chain.from_iterable(sample)) # print("Lifting : {0:.2f}".format(len(pts) / len(trajectories))) sample = [pyscan.convex_hull([pyscan.Point(pt[0], pt[1], 1.0) for pt in traj]) for traj in trajectories] pts = list(itertools.chain.from_iterable(sample)) print("Hull : {0:.2f}".format(len(pts) / len(trajectories))) sample = [pyscan.even_sample_error([pyscan.Point(pt[0], pt[1], 1.0) for pt in traj], alpha, False) for traj in trajectories] pts = list(itertools.chain.from_iterable(sample)) print("Even : {0:.2f}".format(len(pts) / len(trajectories)))
def multiscale_disk(min_disk_r, max_disk_r, alpha, red_sample, blue_sample, net, disc, fast_disk): mx = -1 curr_disk_r = max(min_disk_r, alpha) reg = None while True: chord_l = math.sqrt(4 * alpha * curr_disk_r - 2 * alpha * alpha) #print(chord_l, alpha, curr_disk_r, max_disk_r) m_sample = [pyscan.grid_direc_kernel(pyscan.dp_compress(traj, alpha), chord_l, alpha) for traj in red_sample] b_sample = [pyscan.grid_direc_kernel(pyscan.dp_compress(traj, alpha), chord_l, alpha) for traj in blue_sample] pt_net = [pyscan.grid_direc_kernel(pyscan.dp_compress(traj, alpha), chord_l, alpha) for traj in net] m_sample = list(pyscan.trajectories_to_labels(m_sample)) b_sample = list(pyscan.trajectories_to_labels(b_sample)) net_set = list(pyscan.trajectories_to_labels(pt_net)) #net_set = list(itertools.chain.from_iterable(pt_net)) new_reg, new_mx = pyscan.max_disk_scale_labeled(net_set, m_sample, b_sample, fast_disk, curr_disk_r, disc) #print("Finished") #print("Should match {} {}".format(new_mx, pyscan.evaluate_range(new_reg, m_sample, b_sample, disc))) if new_mx > mx: reg = new_reg mx = new_mx curr_disk_r *= 2 if curr_disk_r >= max_disk_r: break return reg, mx
def testing_disk_geometric_error(trajectories, alpha, max_r, count): random.shuffle(trajectories) trajectories = trajectories[:30] for i in np.linspace(alpha, max_r, count): chord_l = math.sqrt(4 * alpha * i - 2 * alpha * alpha) sample = [pyscan.grid_direc_kernel(pyscan.dp_compress(traj, alpha), chord_l, alpha) for traj in trajectories] print("Grid Direc Error {} {}".format(50 * i, 50 * post_process_error(test_disk_error(trajectories, sample, alpha, max_r)))) sample = [pyscan.grid_kernel(pyscan.dp_compress(traj, alpha), alpha) for traj in trajectories] print("Grid : {}".format(50 * post_process_error(test_disk_error(trajectories, sample, alpha, max_r)))) sample = [pyscan.halfplane_kernel(pyscan.dp_compress(traj, alpha), alpha) for traj in trajectories] print("Halfplane : {}".format(50 * post_process_error(test_disk_error(trajectories, sample, alpha, max_r)))) sample = [pyscan.dp_compress(traj, alpha) for traj in trajectories] print("DP Error: {}".format(50 * post_process_error(test_disk_error(trajectories, sample, alpha, max_r))))
def full_coreset_example(point_count, alpha, method, min_r=None): if min_r is None: min_r = alpha # pts = boxed_trajectory(point_count) #pts = [(0.2562716971245123, 0.37042159171941874), (0.2562716971245123, 0.4148497093588573)] pts = [(0.28076897884325597, 0.5709315642759948), (0.2883670662212526, 0.5731789009659035), (0.2804742254535915, 0.5708019102361805), (0.28057247658348744, 0.5704993841433011), (0.2807034780899998, 0.5714501804351904), (0.2734656448549006, 0.5746699224236597), (0.2902993384423915, 0.5749940575231799), (0.3078862906923401, 0.5769820861334908), (0.30896705312110206, 0.5969488082632861), (0.32072443833104086, 0.5964301921040598), (0.3307133032029929, 0.5930375780625253), (0.34640073360844237, 0.5890183028286218), (0.35494858190868855, 0.588802212762275), (0.3610729023383628, 0.5883916416362222), (0.36329992794916616, 0.5732869459990769), (0.37201152813256444, 0.5787108066642039), (0.37682583349709176, 0.5840266222961576), (0.3765310801074273, 0.5862307409728461), (0.37640007860089164, 0.5878730254770267), (0.3764328289775314, 0.5880675065367327), (0.37649832973078756, 0.5883700326295813), (0.37649832973078756, 0.5889750848153402), (0.3765310801074273, 0.5894504829612848), (0.3765310801074273, 0.5894504829612848), (0.3765310801074273, 0.5894504829612848), (0.3766293312372999, 0.5896017460077398), (0.3771533372633727, 0.5939019383278819), (0.3775135914062933, 0.6018324437625461), (0.3605816466889298, 0.610000648270198), (0.34266719067270024, 0.6244570737083028), (0.3384096417108854, 0.6261857942390467), (0.3402764131787448, 0.6249972988741699), (0.36012314141611323, 0.6221881280117534), (0.3730922905613496, 0.638567755040308), (0.37581057182156274, 0.6664649826047369), (0.3776773432894454, 0.6949456533483143), (0.38265540053710156, 0.7206603712427262), (0.3997510971376172, 0.7241826393240749), (0.42909543459750465, 0.7243339023704993), (0.43620226632606823, 0.7361540289992835), (0.43679177310539713, 0.7557750070229177), (0.4369882753651657, 0.7778810208094789), (0.4371520272483178, 0.7831752274347917), (0.43662802122224503, 0.7839963696868667), (0.4390187987161772, 0.7933962875726462), (0.4388222964564087, 0.809970395660907), (0.4382982904303359, 0.8370032629599792), (0.4391825505993293, 0.8585690515807041), (0.4399030588851706, 0.8777146314583937), (0.4402305626514748, 0.8978758346478641), (0.44091832056067637, 0.9170862415454762), (0.43639876858583676, 0.925729844199042), (0.4386912949498963, 0.9279555718823406), (0.43878954607976894, 0.9269183395639188), (0.43875679570315246, 0.9269399485705596), (0.43875679570315246, 0.9269615575772004), (0.43872404532651277, 0.9269831665838106), (0.43872404532651277, 0.9270263845970922), (0.43872404532651277, 0.9269183395639188), (0.43878954607976894, 0.9269399485705596), (0.4388550468330484, 0.9274153467165043), (0.43675902272875744, 0.9279987898956222), (0.4359402633130202, 0.9259675432720297), (0.2562716971245123, 0.37042159171941874), (0.2562716971245123, 0.4148497093588573)] if method == "lifting": core_set_pts = pyscan.lifting_kernel(pts, math.sqrt(alpha)) elif method == "grid": core_set_pts = pyscan.grid_kernel(pts, alpha) elif method == "even": core_set_pts = pyscan.even_sample_error(pts, alpha, False) elif method =="grid_alt": core_set_pts = pyscan.grid_trajectory(pts, alpha) elif method == "grid_direc": chord_l = math.sqrt(4 * alpha * min_r - 2 * alpha * alpha) core_set_pts = pyscan.grid_direc_kernel(pts, chord_l, alpha) elif method == "kernel": core_set_pts = pyscan.halfplane_kernel(pts, alpha) elif method == "graham": core_set_pts = pyscan.hull(pts) elif method == "dp": core_set_pts = pyscan.dp_compress(pts, alpha) else: return ax = plt.subplot() plot_tuples(ax, pts, "g") plot_points(ax, core_set_pts, "b") for pt in core_set_pts: if math.isinf(pt[0]) or math.isnan(pt[0]) or 0 > pt[0] or 1.0 < pt[0]: print(pt) if math.isinf(pt[1]) or math.isnan(pt[1]) or 0 > pt[1] or 1.0 < pt[1]: print(pt)
def testing_full_framework( red, blue, output_file, l_s, h_s, count, vparam="eps", eps=.01, alpha=.01, max_disk_r=None, min_disk_r=None, disc_name="disc", region_name="halfplane", sample_method="halfplane", fast_disk = True, two_level_sample=True, max_time=None): """ How do I convert the trajectories over? 1) Just sample evenly from the length. 2) Choose points evenly 3) Choose :param trajectories: :param l_s: :param h_s: :param count: :param vparam: :param eps: :param eps_r: :param r: :param q: :param disc_name: :param region_name: :param input_size: :return: """ fieldnames = ["vparam", "disc", "region", "n", "s", "n_pts", "m_pts", "b_pts", "alpha", "time", "m_disc", "m_disc_approx", "sample_method"] with open(output_file, 'w') as f: writer = csv.DictWriter(f, fieldnames=fieldnames) writer.writeheader() for i in np.logspace(l_s, h_s, count): if vparam == "eps": eps = i elif vparam == "alpha": alpha = i n = 1 / eps s = 1 / (2 * eps * eps) n = int(round(n) + .1) s = int(round(s) + .1) disc = utils.disc_to_func(disc_name) red_sample = pyscan.my_sample(red, s) blue_sample = pyscan.my_sample(blue, s) if two_level_sample: red_net = pyscan.my_sample(red, n) blue_net = pyscan.my_sample(blue, n) else: red_net = red_sample blue_net = blue_sample net = red_net + blue_net print("Running: {} {}".format(n, s)) start_time = time.time() if region_name == "multiscale_disk": if max_disk_r is not None and alpha > max_disk_r: print("Max Disk Radius is greater than alpha") continue reg, mx = multiscale_disk(min_disk_r, max_disk_r, alpha, red_sample, blue_sample, net, disc, fast_disk) m_sample, b_sample, net_set = [], [], [] else: if sample_method == "halfplane": m_sample = [pyscan.halfplane_kernel([pyscan.Point(pt[0], pt[1], 1.0) for pt in traj], alpha) for traj in red_sample] b_sample = [pyscan.halfplane_kernel([pyscan.Point(pt[0], pt[1], 1.0) for pt in traj], alpha) for traj in blue_sample] pt_net = [pyscan.halfplane_kernel([pyscan.Point(pt[0], pt[1], 1.0) for pt in traj], alpha) for traj in net] elif sample_method == "dp": m_sample = [pyscan.dp_compress(traj, alpha) for traj in red_sample] b_sample = [pyscan.dp_compress(traj, alpha) for traj in blue_sample] pt_net = [pyscan.dp_compress(traj, alpha) for traj in net] elif sample_method == "hull": m_sample = [pyscan.convex_hull([pyscan.Point(pt[0], pt[1], 1.0) for pt in traj]) for traj in red_sample] b_sample = [pyscan.convex_hull([pyscan.Point(pt[0], pt[1], 1.0) for pt in traj]) for traj in blue_sample] pt_net = [pyscan.convex_hull([pyscan.Point(pt[0], pt[1], 1.0) for pt in traj]) for traj in net] elif sample_method is None: #just takes the waypoints. m_sample = [[pyscan.Point(pt[0], pt[1], 1.0) for pt in traj] for traj in red_sample] b_sample = [[pyscan.Point(pt[0], pt[1], 1.0) for pt in traj] for traj in blue_sample] pt_net = [[pyscan.Point(pt[0], pt[1], 1.0) for pt in traj] for traj in net] elif sample_method == "grid": m_sample = [pyscan.grid_kernel(traj, alpha) for traj in red_sample] b_sample = [pyscan.grid_kernel(traj, alpha) for traj in blue_sample] pt_net = [pyscan.grid_kernel(traj, alpha) for traj in net] elif sample_method == "lifting": m_sample = [pyscan.lifting_kernel(traj, alpha) for traj in red_sample] b_sample = [pyscan.lifting_kernel(traj, alpha) for traj in blue_sample] pt_net = [pyscan.lifting_kernel(traj, alpha) for traj in net] elif sample_method == "grid_direc": if max_disk_r is not None and alpha > max_disk_r: print("Max Disk Radius is greater than alpha") continue chord_l = math.sqrt(4 * alpha * max(min_disk_r, alpha) - 2 * alpha * alpha) m_sample = [pyscan.grid_direc_kernel(pyscan.dp_compress(traj, alpha), chord_l, alpha) for traj in red_sample] b_sample = [pyscan.grid_direc_kernel(pyscan.dp_compress(traj, alpha), chord_l, alpha) for traj in blue_sample] pt_net = [pyscan.grid_direc_kernel(pyscan.dp_compress(traj, alpha), chord_l, alpha) for traj in net] elif sample_method == "even": m_sample = [pyscan.even_sample_error(traj, alpha, False) for traj in red_sample] b_sample = [pyscan.even_sample_error(traj, alpha, False) for traj in blue_sample] pt_net = [pyscan.even_sample_error(traj, alpha, False) for traj in net] else: return if region_name == "multiscale_disk_fixed": m_sample = list(pyscan.trajectories_to_labels(m_sample)) b_sample = list(pyscan.trajectories_to_labels(b_sample)) net_set = list(pyscan.trajectories_to_labels(pt_net)) reg, mx = multiscale_disk_fixed(min_disk_r, max_disk_r, m_sample, b_sample, net_set, disc, fast_disk) else: m_sample = list(pyscan.trajectories_to_labels(m_sample)) b_sample = list(pyscan.trajectories_to_labels(b_sample)) net_set = list(itertools.chain.from_iterable(pt_net)) if region_name == "halfplane": reg, mx = pyscan.max_halfplane_labeled(net_set, m_sample, b_sample, disc) elif region_name == "disk": reg, mx = pyscan.max_disk_labeled(net_set, m_sample, b_sample, disc) elif region_name == "rectangle": reg, mx = pyscan.max_rect_labeled(n, 2 * max_disk_r, m_sample, b_sample, disc) elif region_name == "rectangle_scale": reg, mx = pyscan.max_rect_labeled_scale(n, 2 * max_disk_r, alpha, net_set, m_sample, b_sample, disc) else: return end_time = time.time() actual_mx = pyscan.evaluate_range_trajectory(reg, red, blue, disc) row = {"vparam": vparam, "disc": disc_name, "region": region_name, "n": n, "s": s, "n_pts": len(net_set), "m_pts":len(m_sample), "b_pts":len(b_sample), "alpha":alpha, "time": end_time - start_time, "m_disc_approx": mx, "m_disc": actual_mx, "sample_method": sample_method} writer.writerow(row) f.flush() print(row) if max_time is not None and end_time - start_time > max_time: return