Example #1
0
 def __init__(self, mf):
     from pyscf.pbc import scf
     assert(isinstance(mf, scf.khf.KSCF))
     self.cell = mf.cell
     uhf.TDA.__init__(self, mf)
     from pyscf.pbc.df.df_ao2mo import warn_pbc2d_eri
     warn_pbc2d_eri(mf)
Example #2
0
File: kuhf.py Project: tmash/pyscf
 def __init__(self, mf):
     from pyscf.pbc import scf
     assert (isinstance(mf, scf.khf.KSCF))
     self.cell = mf.cell
     uhf.TDA.__init__(self, mf)
     from pyscf.pbc.df.df_ao2mo import warn_pbc2d_eri
     warn_pbc2d_eri(mf)
Example #3
0
 def ccsd(self, t1=None, t2=None, eris=None, mbpt2=False):
     from pyscf.pbc.df.df_ao2mo import warn_pbc2d_eri
     warn_pbc2d_eri(self._scf)
     if mbpt2:
         pt = mp.RMP2(self._scf, self.frozen, self.mo_coeff, self.mo_occ)
         self.e_corr, self.t2 = pt.kernel(eris=eris)
         nocc, nvir = self.t2.shape[1:3]
         self.t1 = numpy.zeros((nocc, nvir))
         return self.e_corr, self.t1, self.t2
     return rccsd.RCCSD.ccsd(self, t1, t2, eris)
Example #4
0
 def ccsd(self, t1=None, t2=None, eris=None, mbpt2=False):
     from pyscf.pbc.df.df_ao2mo import warn_pbc2d_eri
     warn_pbc2d_eri(self._scf)
     if mbpt2:
         pt = mp.RMP2(self._scf, self.frozen, self.mo_coeff, self.mo_occ)
         self.e_corr, self.t2 = pt.kernel(eris=eris)
         nocc, nvir = self.t2.shape[1:3]
         self.t1 = numpy.zeros((nocc,nvir))
         return self.e_corr, self.t1, self.t2
     return rccsd.RCCSD.ccsd(self, t1, t2, eris)
Example #5
0
 def ccsd(self, t1=None, t2=None, eris=None, mbpt2=False):
     from pyscf.pbc.df.df_ao2mo import warn_pbc2d_eri
     warn_pbc2d_eri(self._scf)
     if mbpt2:
         pt = mp.UMP2(self._scf, self.frozen, self.mo_coeff, self.mo_occ)
         self.e_corr, self.t2 = pt.kernel(eris=eris)
         nocca, noccb = self.nocc
         nmoa, nmob = self.nmo
         nvira, nvirb = nmoa-nocca, nmob-noccb
         self.t1 = (numpy.zeros((nocca,nvira)), numpy.zeros((noccb,nvirb)))
         return self.e_corr, self.t1, self.t2
     return uccsd.UCCSD.ccsd(self, t1, t2, eris)
Example #6
0
 def ccsd(self, t1=None, t2=None, eris=None, mbpt2=False):
     from pyscf.pbc.df.df_ao2mo import warn_pbc2d_eri
     warn_pbc2d_eri(self._scf)
     if mbpt2:
         pt = mp.UMP2(self._scf, self.frozen, self.mo_coeff, self.mo_occ)
         self.e_corr, self.t2 = pt.kernel(eris=eris)
         nocca, nvira = self.nocc
         nmoa, nmoa = self.nmo
         nvira, nvirb = nmoa-nocca, nmob-noccb
         self.t1 = (numpy.zeros((nocca,nvira)), numpy.zeros((noccb,nvirb)))
         return self.e_corr, self.t1, self.t2
     return uccsd.UCCSD.ccsd(self, t1, t2, eris)
Example #7
0
def general(mydf, mo_coeffs, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_general_compact', True)):
    '''General MO integral transformation'''
    from pyscf.pbc.df.df_ao2mo import warn_pbc2d_eri
    warn_pbc2d_eri(mydf)
    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    if isinstance(mo_coeffs, numpy.ndarray) and mo_coeffs.ndim == 2:
        mo_coeffs = (mo_coeffs,) * 4
    mo_coeffs = [numpy.asarray(mo, order='F') for mo in mo_coeffs]
    if not _iskconserv(cell, kptijkl):
        lib.logger.warn(cell, 'fft_ao2mo: momentum conservation not found in '
                        'the given k-points %s', kptijkl)
        return numpy.zeros([mo.shape[1] for mo in mo_coeffs])

    allreal = not any(numpy.iscomplexobj(mo) for mo in mo_coeffs)
    q = kptj - kpti
    coulG = tools.get_coulG(cell, q, mesh=mydf.mesh)
    coords = cell.gen_uniform_grids(mydf.mesh)
    max_memory = mydf.max_memory - lib.current_memory()[0]

    if gamma_point(kptijkl) and allreal:
        ao = mydf._numint.eval_ao(cell, coords, kpti)[0]
        if ((iden_coeffs(mo_coeffs[0], mo_coeffs[1]) and
             iden_coeffs(mo_coeffs[0], mo_coeffs[2]) and
             iden_coeffs(mo_coeffs[0], mo_coeffs[3]))):
            moiT = mojT = numpy.asarray(lib.dot(mo_coeffs[0].T,ao.T), order='C')
            ao = None
            max_memory = max_memory - moiT.nbytes*1e-6
            eri = _contract_compact(mydf, (moiT,mojT), coulG, max_memory=max_memory)
            if not compact:
                nmo = moiT.shape[0]
                eri = ao2mo.restore(1, eri, nmo).reshape(nmo**2,nmo**2)
        else:
            mos = [numpy.asarray(lib.dot(c.T, ao.T), order='C') for c in mo_coeffs]
            ao = None
            fac = numpy.array(1.)
            max_memory = max_memory - sum([x.nbytes for x in mos])*1e-6
            eri = _contract_plain(mydf, mos, coulG, fac, max_memory=max_memory).real
        return eri

    else:
        aos = mydf._numint.eval_ao(cell, coords, kptijkl)
        mos = [numpy.asarray(lib.dot(c.T, aos[i].T), order='C')
               for i,c in enumerate(mo_coeffs)]
        aos = None
        fac = numpy.exp(-1j * numpy.dot(coords, q))
        max_memory = max_memory - sum([x.nbytes for x in mos])*1e-6
        eri = _contract_plain(mydf, mos, coulG, fac, max_memory=max_memory)
        return eri
Example #8
0
 def __init__(self, mf, frozen=0, mo_coeff=None, mo_occ=None):
     from pyscf.pbc.df.df_ao2mo import warn_pbc2d_eri
     warn_pbc2d_eri(mf)
     gcisd.GCISD.__init__(self, mf, frozen, mo_coeff, mo_occ)
Example #9
0
 def __init__(self, mf, frozen=0, mo_coeff=None, mo_occ=None):
     if abs(mf.kpt).max() > 1e-9:
         raise NotImplementedError
     from pyscf.pbc.df.df_ao2mo import warn_pbc2d_eri
     warn_pbc2d_eri(mf)
     ucisd.UCISD.__init__(self, mf, frozen, mo_coeff, mo_occ)
Example #10
0
 def __init__(self, mf, frozen=0, mo_coeff=None, mo_occ=None):
     from pyscf.pbc.df.df_ao2mo import warn_pbc2d_eri
     warn_pbc2d_eri(mf)
     gmp2.GMP2.__init__(self, mf, frozen, mo_coeff, mo_occ)
Example #11
0
 def __init__(self, mf, frozen=0, mo_coeff=None, mo_occ=None):
     if abs(mf.kpt).max() > 1e-9:
         raise NotImplementedError
     from pyscf.pbc.df.df_ao2mo import warn_pbc2d_eri
     warn_pbc2d_eri(mf)
     ump2.UMP2.__init__(self, mf, frozen, mo_coeff, mo_occ)
Example #12
0
def general(mydf, mo_coeffs, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_general_compact', True)):
    warn_pbc2d_eri(mydf)
    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    if isinstance(mo_coeffs, numpy.ndarray) and mo_coeffs.ndim == 2:
        mo_coeffs = (mo_coeffs,) * 4
    if not _iskconserv(cell, kptijkl):
        lib.logger.warn(cell, 'aft_ao2mo: momentum conservation not found in '
                        'the given k-points %s', kptijkl)
        return numpy.zeros([mo.shape[1] for mo in mo_coeffs])

    q = kptj - kpti
    mesh = mydf.mesh
    coulG = mydf.weighted_coulG(q, False, mesh)
    all_real = not any(numpy.iscomplexobj(mo) for mo in mo_coeffs)
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .5)

####################
# gamma point, the integral is real and with s4 symmetry
    if gamma_point(kptijkl) and all_real:
        ijmosym, nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1], compact)
        klmosym, nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3], compact)
        eri_mo = numpy.zeros((nij_pair,nkl_pair))
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[2]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[3]))

        ijR = ijI = klR = klI = buf = None
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory,
                                aosym='s2'):
            buf = lib.transpose(pqkR, out=buf)
            ijR, klR = _dtrans(buf, ijR, ijmosym, moij, ijslice,
                               buf, klR, klmosym, mokl, klslice, sym)
            lib.ddot(ijR.T, klR*coulG[p0:p1,None], 1, eri_mo, 1)
            buf = lib.transpose(pqkI, out=buf)
            ijI, klI = _dtrans(buf, ijI, ijmosym, moij, ijslice,
                               buf, klI, klmosym, mokl, klslice, sym)
            lib.ddot(ijI.T, klI*coulG[p0:p1,None], 1, eri_mo, 1)
            pqkR = pqkI = None
        return eri_mo

####################
# (kpt) i == j == k == l != 0
# (kpt) i == l && j == k && i != j && j != k  =>
#
    elif is_zero(kpti-kptl) and is_zero(kptj-kptk):
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nlk_pair, molk, lkslice = _conc_mos(mo_coeffs[3], mo_coeffs[2])[1:]
        eri_mo = numpy.zeros((nij_pair,nlk_pair), dtype=numpy.complex)
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[3]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[2]))

        zij = zlk = buf = None
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory):
            buf = lib.transpose(pqkR+pqkI*1j, out=buf)
            zij, zlk = _ztrans(buf, zij, moij, ijslice,
                               buf, zlk, molk, lkslice, sym)
            lib.dot(zij.T, zlk.conj()*coulG[p0:p1,None], 1, eri_mo, 1)
            pqkR = pqkI = None
        nmok = mo_coeffs[2].shape[1]
        nmol = mo_coeffs[3].shape[1]
        eri_mo = lib.transpose(eri_mo.reshape(-1,nmol,nmok), axes=(0,2,1))
        return eri_mo.reshape(nij_pair,nlk_pair)

####################
# aosym = s1, complex integrals
#
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
#
    else:
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3])[1:]
        eri_mo = numpy.zeros((nij_pair,nkl_pair), dtype=numpy.complex)

        tao = []
        ao_loc = None
        zij = zkl = buf = None
        for (pqkR, pqkI, p0, p1), (rskR, rskI, q0, q1) in \
                lib.izip(mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory*.5),
                         mydf.pw_loop(mesh,-kptijkl[2:], q, max_memory=max_memory*.5)):
            buf = lib.transpose(pqkR+pqkI*1j, out=buf)
            zij = _ao2mo.r_e2(buf, moij, ijslice, tao, ao_loc, out=zij)
            buf = lib.transpose(rskR-rskI*1j, out=buf)
            zkl = _ao2mo.r_e2(buf, mokl, klslice, tao, ao_loc, out=zkl)
            zij *= coulG[p0:p1,None]
            lib.dot(zij.T, zkl, 1, eri_mo, 1)
            pqkR = pqkI = rskR = rskI = None
        return eri_mo
Example #13
0
 def __init__(self, mf, frozen=None, mo_coeff=None, mo_occ=None):
     from pyscf.pbc.df.df_ao2mo import warn_pbc2d_eri
     warn_pbc2d_eri(mf)
     gcisd.GCISD.__init__(self, mf, frozen, mo_coeff, mo_occ)
Example #14
0
def general(mydf, mo_coeffs, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_general_compact', True)):
    warn_pbc2d_eri(mydf)
    cell = mydf.cell
    kptijkl = _format_kpts(kpts)
    kpti, kptj, kptk, kptl = kptijkl
    if isinstance(mo_coeffs, numpy.ndarray) and mo_coeffs.ndim == 2:
        mo_coeffs = (mo_coeffs,) * 4
    if not _iskconserv(cell, kptijkl):
        lib.logger.warn(cell, 'aft_ao2mo: momentum conservation not found in '
                        'the given k-points %s', kptijkl)
        return numpy.zeros([mo.shape[1] for mo in mo_coeffs])

    q = kptj - kpti
    mesh = mydf.mesh
    coulG = mydf.weighted_coulG(q, False, mesh)
    all_real = not any(numpy.iscomplexobj(mo) for mo in mo_coeffs)
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .5)

####################
# gamma point, the integral is real and with s4 symmetry
    if gamma_point(kptijkl) and all_real:
        ijmosym, nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1], compact)
        klmosym, nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3], compact)
        eri_mo = numpy.zeros((nij_pair,nkl_pair))
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[2]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[3]))

        ijR = ijI = klR = klI = buf = None
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory,
                                aosym='s2'):
            buf = lib.transpose(pqkR, out=buf)
            ijR, klR = _dtrans(buf, ijR, ijmosym, moij, ijslice,
                               buf, klR, klmosym, mokl, klslice, sym)
            lib.ddot(ijR.T, klR*coulG[p0:p1,None], 1, eri_mo, 1)
            buf = lib.transpose(pqkI, out=buf)
            ijI, klI = _dtrans(buf, ijI, ijmosym, moij, ijslice,
                               buf, klI, klmosym, mokl, klslice, sym)
            lib.ddot(ijI.T, klI*coulG[p0:p1,None], 1, eri_mo, 1)
            pqkR = pqkI = None
        return eri_mo

####################
# (kpt) i == j == k == l != 0
# (kpt) i == l && j == k && i != j && j != k  =>
#
    elif is_zero(kpti-kptl) and is_zero(kptj-kptk):
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nlk_pair, molk, lkslice = _conc_mos(mo_coeffs[3], mo_coeffs[2])[1:]
        eri_mo = numpy.zeros((nij_pair,nlk_pair), dtype=numpy.complex)
        sym = (iden_coeffs(mo_coeffs[0], mo_coeffs[3]) and
               iden_coeffs(mo_coeffs[1], mo_coeffs[2]))

        zij = zlk = buf = None
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory):
            buf = lib.transpose(pqkR+pqkI*1j, out=buf)
            zij, zlk = _ztrans(buf, zij, moij, ijslice,
                               buf, zlk, molk, lkslice, sym)
            lib.dot(zij.T, zlk.conj()*coulG[p0:p1,None], 1, eri_mo, 1)
            pqkR = pqkI = None
        nmok = mo_coeffs[2].shape[1]
        nmol = mo_coeffs[3].shape[1]
        eri_mo = lib.transpose(eri_mo.reshape(-1,nmol,nmok), axes=(0,2,1))
        return eri_mo.reshape(nij_pair,nlk_pair)

####################
# aosym = s1, complex integrals
#
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
#
    else:
        mo_coeffs = _mo_as_complex(mo_coeffs)
        nij_pair, moij, ijslice = _conc_mos(mo_coeffs[0], mo_coeffs[1])[1:]
        nkl_pair, mokl, klslice = _conc_mos(mo_coeffs[2], mo_coeffs[3])[1:]
        eri_mo = numpy.zeros((nij_pair,nkl_pair), dtype=numpy.complex)

        tao = []
        ao_loc = None
        zij = zkl = buf = None
        for (pqkR, pqkI, p0, p1), (rskR, rskI, q0, q1) in \
                lib.izip(mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory*.5),
                         mydf.pw_loop(mesh,-kptijkl[2:], q, max_memory=max_memory*.5)):
            buf = lib.transpose(pqkR+pqkI*1j, out=buf)
            zij = _ao2mo.r_e2(buf, moij, ijslice, tao, ao_loc, out=zij)
            buf = lib.transpose(rskR-rskI*1j, out=buf)
            zkl = _ao2mo.r_e2(buf, mokl, klslice, tao, ao_loc, out=zkl)
            zij *= coulG[p0:p1,None]
            lib.dot(zij.T, zkl, 1, eri_mo, 1)
            pqkR = pqkI = rskR = rskI = None
        return eri_mo
Example #15
0
def get_eri(mydf, kpts=None,
            compact=getattr(__config__, 'pbc_df_ao2mo_get_eri_compact', True)):
    warn_pbc2d_eri(mydf)
    cell = mydf.cell
    nao = cell.nao_nr()
    kptijkl = _format_kpts(kpts)
    if not _iskconserv(cell, kptijkl):
        lib.logger.warn(cell, 'aft_ao2mo: momentum conservation not found in '
                        'the given k-points %s', kptijkl)
        return numpy.zeros((nao,nao,nao,nao))

    kpti, kptj, kptk, kptl = kptijkl
    q = kptj - kpti
    mesh = mydf.mesh
    coulG = mydf.weighted_coulG(q, False, mesh)
    nao_pair = nao * (nao+1) // 2
    max_memory = max(2000, (mydf.max_memory - lib.current_memory()[0]) * .8)

####################
# gamma point, the integral is real and with s4 symmetry
    if gamma_point(kptijkl):
        eriR = numpy.zeros((nao_pair,nao_pair))
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory,
                                aosym='s2'):
            vG = numpy.sqrt(coulG[p0:p1])
            pqkR *= vG
            pqkI *= vG
            lib.ddot(pqkR, pqkR.T, 1, eriR, 1)
            lib.ddot(pqkI, pqkI.T, 1, eriR, 1)
            pqkR = pqkI = None
        if not compact:
            eriR = ao2mo.restore(1, eriR, nao).reshape(nao**2,-1)
        return eriR

####################
# (kpt) i == j == k == l != 0
# (kpt) i == l && j == k && i != j && j != k  =>
#
# complex integrals, N^4 elements
    elif is_zero(kpti-kptl) and is_zero(kptj-kptk):
        eriR = numpy.zeros((nao**2,nao**2))
        eriI = numpy.zeros((nao**2,nao**2))
        for pqkR, pqkI, p0, p1 \
                in mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory):
            vG = numpy.sqrt(coulG[p0:p1])
            pqkR *= vG
            pqkI *= vG
# rho_pq(G+k_pq) * conj(rho_rs(G-k_rs))
            zdotNC(pqkR, pqkI, pqkR.T, pqkI.T, 1, eriR, eriI, 1)
            pqkR = pqkI = None
        pqkR = pqkI = coulG = None
# transpose(0,1,3,2) because
# j == k && i == l  =>
# (L|ij).transpose(0,2,1).conj() = (L^*|ji) = (L^*|kl)  =>  (M|kl)
# rho_rs(-G+k_rs) = conj(transpose(rho_sr(G+k_sr), (0,2,1)))
        eri = lib.transpose((eriR+eriI*1j).reshape(-1,nao,nao), axes=(0,2,1))
        return eri.reshape(nao**2,-1)

####################
# aosym = s1, complex integrals
#
# If kpti == kptj, (kptl-kptk)*a has to be multiples of 2pi because of the wave
# vector symmetry.  k is a fraction of reciprocal basis, 0 < k/b < 1, by definition.
# So  kptl/b - kptk/b  must be -1 < k/b < 1.  =>  kptl == kptk
#
    else:
        eriR = numpy.zeros((nao**2,nao**2))
        eriI = numpy.zeros((nao**2,nao**2))
#
#       (pq|rs) = \sum_G 4\pi rho_pq rho_rs / |G+k_{pq}|^2
#       rho_pq = 1/N \sum_{Tp,Tq} \int exp(-i(G+k_{pq})*r) p(r-Tp) q(r-Tq) dr
#              = \sum_{Tq} exp(i k_q*Tq) \int exp(-i(G+k_{pq})*r) p(r) q(r-Tq) dr
# Note the k-point wrap-around for rho_rs, which leads to G+k_{pq} in FT
#       rho_rs = 1/N \sum_{Tr,Ts} \int exp( i(G+k_{pq})*r) r(r-Tr) s(r-Ts) dr
#              = \sum_{Ts} exp(i k_s*Ts) \int exp( i(G+k_{pq})*r) r(r) s(r-Ts) dr
# rho_pq can be directly evaluated by AFT (function pw_loop)
#       rho_pq = pw_loop(k_q, G+k_{pq})
# Assuming r(r) and s(r) are real functions, rho_rs is evaluated
#       rho_rs = 1/N \sum_{Tr,Ts} \int exp( i(G+k_{pq})*r) r(r-Tr) s(r-Ts) dr
#              = conj(\sum_{Ts} exp(-i k_s*Ts) \int exp(-i(G+k_{pq})*r) r(r) s(r-Ts) dr)
#              = conj( pw_loop(-k_s, G+k_{pq}) )
#
# TODO: For complex AO function r(r) and s(r), pw_loop function needs to be
# extended to include Gv vector in the arguments
        for (pqkR, pqkI, p0, p1), (rskR, rskI, q0, q1) in \
                lib.izip(mydf.pw_loop(mesh, kptijkl[:2], q, max_memory=max_memory*.5),
                         mydf.pw_loop(mesh,-kptijkl[2:], q, max_memory=max_memory*.5)):
            pqkR *= coulG[p0:p1]
            pqkI *= coulG[p0:p1]
            zdotNC(pqkR, pqkI, rskR.T, rskI.T, 1, eriR, eriI, 1)
            pqkR = pqkI = rskR = rskI = None
        return (eriR+eriI*1j)