def get_args(filename, sd, bn, im): x = ArffToArgs() x.set_input(filename) x.set_class_index("last") x.set_impute(im) x.set_binarize(bn) x.set_standardize(sd) args = x.get_args() x.close() return args
bs = args["batch_size"] else: bs = 128 X_test = args["X_test"] preds = iter_test(X_test).tolist() new = [] for pred in preds: new.append(np.eye(args["num_classes"])[pred].tolist()) return new if __name__ == '__main__': x = ArffToArgs() x.set_input("data/cpu_act.arff") x.set_class_index("last") x.set_impute(True) x.set_binarize(True) x.set_standardize(True) x.set_arguments( "adaptive=True;alpha=0.01;lambda=0;epochs=500;rmsprop=True") args = x.get_args() #args["debug"] = True args["X_test"] = np.asarray(args["X_train"], dtype="float32") model = train(args) test(args, model)
if "batch_size" in args: bs = args["batch_size"] else: bs = 128 X_test = args["X_test"] preds = iter_test(X_test).tolist() new = [] for pred in preds: new.append( np.eye(args["num_classes"])[pred].tolist() ) return new if __name__ == '__main__': x = ArffToArgs() x.set_input("data/cpu_act.arff") x.set_class_index("last") x.set_impute(True) x.set_binarize(True) x.set_standardize(True) x.set_arguments("adaptive=True;alpha=0.01;lambda=0;epochs=500;rmsprop=True") args = x.get_args() #args["debug"] = True args["X_test"] = np.asarray(args["X_train"], dtype="float32") model = train(args) test(args, model)