Example #1
0
    def test1DCDFandPPF(self):
        # prepare data
        U = Normal(0.5, 0.1, 0, 1)
        train_samples = U.rvs(1000).reshape(1000, 1)

        dist = SGDEdist.byLearnerSGDEConfig(train_samples,
                                            config={
                                                "grid_level": 5,
                                                "grid_type": "poly",
                                                "refinement_numSteps": 0,
                                                "refinement_numPoints": 10,
                                                "regularization_type":
                                                "Laplace",
                                                "crossValidation_lambda":
                                                0.000562341,
                                                "crossValidation_enable":
                                                False,
                                                "crossValidation_kfold": 5,
                                                "crossValidation_silent": True
                                            },
                                            bounds=U.getBounds())

        fig = plt.figure()
        plt.hist(train_samples, bins=10, normed=True)
        plotDensity1d(U)
        plotDensity1d(dist)
        plt.title("original space")
        fig.show()

        transformed_samples = dist.cdf(train_samples)

        fig = plt.figure()
        plt.hist(transformed_samples, bins=10, normed=True)
        plt.title("uniform space")
        fig.show()

        transformed_samples = dist.ppf(transformed_samples)

        fig = plt.figure()
        plt.hist(transformed_samples, bins=10, normed=True)
        plotDensity1d(U)
        plotDensity1d(dist)
        plt.title("original space")
        fig.show()
        plt.show()
Example #2
0
    def test1DCDFandPPF(self):
        # prepare data
        U = Normal(0.5, 0.1, 0, 1)
        train_samples = U.rvs(1000).reshape(1000, 1)

        dist = KDEDist(train_samples, kernelType=KernelType_EPANECHNIKOV)

        rc('font', **{'size': 18})

        fig = plt.figure()
        x = np.linspace(0, 1, 1000)
        plt.plot(x, dist.cdf(x), label="estimated")
        plt.plot(x, [U.cdf(xi) for xi in x], label="analytic")
        plt.legend(loc="lower right")
        fig.show()

        fig = plt.figure()
        plt.hist(train_samples, normed=True)
        plotDensity1d(U, label="analytic")
        plotDensity1d(dist, label="estimated")
        plt.title("original space")
        plt.legend()
        fig.show()

        transformed_samples = dist.cdf(train_samples)

        fig = plt.figure()
        plt.hist(transformed_samples, normed=True)
        plt.title("uniform space")
        fig.show()

        transformed_samples = dist.ppf(transformed_samples)

        fig = plt.figure()
        plt.hist(transformed_samples, normed=True)
        plotDensity1d(U, label="analytic")
        plotDensity1d(dist, label="estimated")
        plt.title("original space")
        plt.legend()
        fig.show()

        plt.show()