Example #1
0
def test_ShiftCoeffs(verbose=False):
    """ Test accuracy of shift_coefficients method"""

    # First invent a plausible polynomial
    order = 5
    a = makeup_polynomial()

    if verbose:
        print('A')
        polynomial.print_triangle(a)

    # Shift by a random step
    np.random.seed(seed=1)
    [xshift, yshift] = 1024.0 * np.random.rand(2) - 512.0

    ashift = polynomial.shift_coefficients(a, xshift, yshift, verbose)
    if verbose:
        print('AS')
        polynomial.print_triangle(ashift)

    # Choose a random point
    [x, y] = 2048 * np.random.rand(2) - 1024.0
    u1 = polynomial.poly(a, x, y, order)
    u2 = polynomial.poly(ashift, x - xshift, y - yshift, order)

    if verbose:
        print('XY', x, y)
        print('Shift', xshift, yshift)
        print('U values', u1, u2, u1 - u2)

    assert abs(u1 - u2) < 1.0e-12, 'Inaccurate shift transformation'

    return None
Example #2
0
def test_RotateCoeffs(verbose=False):
    """Test accuracy of inversion method"""

    # First invent a random but plausible polynomial array
    a = makeup_polynomial()
    order = 5
    if verbose:
        print('A')
        polynomial.print_triangle(a)

    # Random point within 2048 square with origin at the center
    np.random.seed(seed=1)
    [x, y] = 2048.0 * np.random.rand(2) - 1024.0
    u = polynomial.poly(a, x, y, order)

    # Random angle

    theta = 360 * np.random.rand(1)
    if verbose:
        print('Angle', theta)
    thetar = np.radians(theta)
    xp = x * np.cos(thetar) - y * np.sin(thetar)
    yp = x * np.sin(thetar) + y * np.cos(thetar)
    ap = polynomial.prepend_rotation_to_polynomial(a, theta, order)
    u = polynomial.poly(a, x, y, order)
    up = polynomial.poly(ap, xp, yp,
                         order)  # using transformed point and polynomial
    if verbose:
        print('X Y', x, y)
        print('U', u)
        print('XP YP', xp, yp)
        print('UP', up)
        print('UP-U', up - u)
    assert abs(up - u) < 1.0e-12, 'Inaccurate transformation conversion'
Example #3
0
def test_invert(verbose=True):
    """Test accuracy of inversion method"""

    # First invent a plausible pair of polynomial arrays
    order = 5
    a = makeup_polynomial()
    b = makeup_polynomial()
    # Modify linear terms in b array so sclae term is b[2]
    btemp = b[1]
    b[1] = b[2]
    b[2] = btemp

    if verbose:
        print('A')
        polynomial.print_triangle(a)
        print('B')
        polynomial.print_triangle(b)

    # Random point within 2048 square with origin at the center
    np.random.seed(seed=1)
    (x, y) = 2048.0 * np.random.rand(2) - 1024.0
    u = polynomial.poly(a, x, y, order)
    v = polynomial.poly(b, x, y, order)
    if verbose:
        print('X Y', x, y)
        print('U V', u, v)

    (x2, y2, error, iterations) = polynomial.invert(a,
                                                    b,
                                                    u,
                                                    v,
                                                    verbose=verbose)

    if verbose:
        print('Error', error, ' after', iterations, ' iterations')
        print('X2 Y2', x2, y2)
        print('Dx Dy', x2 - x, y2 - y)
    assert abs(x2 - x) < 1.0e-12 and abs(y2 - y) < 1.0e-12, 'Error too large'

    return
Example #4
0
def test_two_step(verbose=False):
    # make up random polynomials of order 5 with terms which decrease strongly with power.
    A = makeup_polynomial()
    B = makeup_polynomial()
    a = np.array([1.0, 0.5, 0.1])
    b = np.array([2.0, 0.2, 0.6])

    (A2, B2) = polynomial.two_step(A, B, a, b)
    if verbose:
        print('\nA')
        polynomial.print_triangle(A)  #     print('B')
        print('B')
        polynomial.print_triangle(B)
        print('\nLinear terms')
        print('a', a)
        print('b', b)
        print('\nA2')
        polynomial.print_triangle(A2)
        print('B2')
        polynomial.print_triangle(B2)

    # Now do a test calculation
    (x, y) = (10, 5)
    xp = a[0] + a[1] * x + a[2] * y
    yp = b[0] + b[1] * x + b[2] * y
    u = polynomial.poly(A, xp, yp, 5)
    v = polynomial.poly(B, xp, yp, 5)
    up = polynomial.poly(A2, x, y, 5)
    vp = polynomial.poly(B2, x, y, 5)

    if verbose:
        print('x,y', x, y)
        print('xp,yp', xp, yp)
        print('Two step', u, v)
        print('One step', up, vp)

    assert abs(u - up) < 1.0e-12 and abs(
        v - vp) < 1.0e-12, 'Inaccurate transformation'
Example #5
0
def test_poly(verbose=False):
    """ Tests polynomial evaluation by calculating a 9 by 9 array across a 2048 pixel grid
    Then polyfit is used to fit the calculated points to generate a new pair of polynomials
    Finally the original x,y points are used in the new polynomials and the outputs compared
    This incidentally provides a robust test of polyfit

    parameters
    verbose: logical value. If True, print statements and graph will be output
            if False or unassigned there will be no output unless the assert statement issues
            a Polynomial inaccuracy message.
    return: None """

    [x, y] = np.mgrid[0:9, 0:9]
    xp = 256.0 * x - 1024.0
    yp = 256.0 * y - 1024.0
    #u = np.zeros((9, 9))
    #v = np.zeros((9, 9))

    # Random polynomials
    a = makeup_polynomial()
    b = makeup_polynomial()
    # Switch linear terms for b coefficients so that b[2] is approximate scale
    btemp = b[1]
    b[1] = b[2]
    b[2] = btemp

    if verbose:
        print('A coefficients')
        polynomial.print_triangle(a)
        print('B coefficients')
        polynomial.print_triangle(b)

    # Evaluate polynomials acting on x,y arrays
    u = polynomial.poly(a, x, y, 5)
    v = polynomial.poly(b, x, y, 5)
    # Fit new polynomials to calculated positions
    s1 = polynomial.polyfit(u, x, y, 5)
    s2 = polynomial.polyfit(v, x, y, 5)
    # Evaluate new polynomials
    uc = polynomial.poly(s1, x, y, 5)
    vc = polynomial.poly(s2, x, y, 5)
    # Compare outputs
    du = uc - u
    dv = vc - v
    u_std = np.std(du)
    v_std = np.std(dv)

    if verbose:
        print('Fitted polynomials')
        print('S1')
        polynomial.print_triangle(s1)
        print('S2')
        polynomial.print_triangle(s2)
        print('Fit comparison STDs {:10.2e} {:10.2e}'.format(u_std, v_std))
        pl.figure(1)
        pl.clf()
        pl.grid(True)
        pl.plot(u, v, 'gx')
        pl.plot(uc, vc, 'r+')

    assert u_std < 1.0e-12 and v_std < 1.0e-12, 'Polynomial inaccuracy'
    return None
Example #6
0
def get_mirim_coefficients(distortion_file, verbose=False):
    """Read delivered FITS file for MIRI imager and return data to be ingested in SIAF.

    Parameters
    ----------
    distortion_file : str
        Name of distortion file.
    verbose : bool
        verbosity

    Returns
    -------
    csv_data : dict
        Dictionary containing the data

    """
    miri = fits.open(os.path.join(source_data_dir, distortion_file))

    T = miri['T matrix'].data
    TI = miri['TI matrix'].data

    # CDP7 T matrices transform from/to v2,v3 in arcsec
    # set VtoAN and ANtoV to unit matrix
    VtoAN = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])
    ANtoV = np.array([[1.0, 0.0, 0.0], [0.0, 1.0, 0.0], [0.0, 0.0, 1.0]])

    TV = np.dot(T, VtoAN)
    VT = np.dot(ANtoV, TI)
    prod = np.dot(VT, TV)
    TT = np.dot(T, TI)

    if verbose:
        print('T\n', T)
        print('TI\n', TI)
        print('VtoAN\n', VtoAN)
        print('\n TV V2V3 to XY Entrance')
        print(TV)
        print(1.0 / TV[1, 1], 'arcsec/mm')
        print('\nANtoV\n', ANtoV)
        print('\n VTXY entrance to V2V3')
        print('VT\n', VT)
        print()
        print('VT comparison\n', prod)
        print('T comparison\n', TT)

    # Get linear coefficient layout
    A = miri['AI matrix'].data
    B = miri['BI matrix'].data
    C = miri['A matrix'].data
    D = miri['B matrix'].data
    AL = untangle(A)
    BL = untangle(B)
    CL = untangle(C)
    DL = untangle(D)
    if verbose:
        print('Initial AL\n', AL)
        print('Initial BL\n', BL)
        print('CL\n', CL)
        print('DL\n', DL)

    # scale factor corresponding to 25 mum pixel size, i.e. 40 pixels/mm
    order = 4
    k = 0
    for i in range(order + 1):
        factor = 0.025**i
        for j in range(i + 1):
            AL[k] = AL[k] * factor
            BL[k] = BL[k] * factor
            k += 1

    AF = VT[0, 0] * AL + VT[0, 1] * BL
    AF[0] = AF[0] + VT[0, 2]
    BF = VT[1, 0] * AL + VT[1, 1] * BL
    BF[0] = BF[0] + VT[1, 2]

    if verbose:
        polynomial.print_triangle(AF)
        polynomial.print_triangle(BF)

        print('AL scaled\n', AL)
        print('\n A FINAL')
        print('\n B FINAL')

    ## print('INVERSE TRANSFORMATIONS')
    # Combine TV with polynomial using polynomial.two_step
    # combination of several polynomial coefficients
    a = np.array([TV[0, 2], TV[0, 0], TV[0, 1]])
    b = np.array([TV[1, 2], TV[1, 0], TV[1, 1]])
    (C2, D2) = polynomial.two_step(CL, DL, a, b)
    CF = 40 * C2
    DF = 40 * D2
    if verbose:
        polynomial.print_triangle(CF)
        polynomial.print_triangle(DF)

        print('a', a)
        print('b', b)
        print('\nC Final')
        print('\nD Final')

        # if verbose:

        # Test two_step
        v2 = -280
        v3 = -430

        xin = TV[0, 0] * v2 + TV[0, 1] * v3 + TV[0, 2]
        yin = TV[1, 0] * v2 + TV[1, 1] * v3 + TV[1, 2]

        xmm = polynomial.poly(CL, xin, yin, 4)
        ymm = polynomial.poly(DL, xin, yin, 4)

        xmm2 = polynomial.poly(C2, v2, v3, 4)
        ymm2 = polynomial.poly(D2, v2, v3, 4)

        # Backwards check
        xp = 0
        yp = 0
        v2 = polynomial.poly(AF, xp, yp, 4)
        v3 = polynomial.poly(BF, xp, yp, 4)
        xpix = polynomial.poly(CF, v2, v3, 4)
        ypix = polynomial.poly(DF, v2, v3, 4)

        print('IN', xin, yin)
        print('MM', xmm, ymm)
        print('MM2', xmm2, ymm2)
        print('V', v2, v3)
        print('Original ', xp, yp)
        print('Recovered', xpix, ypix)
        print('Change   ', xpix - xp, ypix - yp)

        invcheck(AF, BF, CF, DF, 4, -512.0, 512.0)

    CS = polynomial.shift_coefficients(CF, AF[0], BF[0])
    DS = polynomial.shift_coefficients(DF, AF[0], BF[0])
    CS[0] = 0.0
    DS[0] = 0.0

    # extract V2,V3 reference position
    V2cen = AF[0]
    V3cen = BF[0]

    # reset zero order coefficients to zero
    AF[0] = 0.0
    BF[0] = 0.0

    if verbose:
        polynomial.print_triangle(CS)
        polynomial.print_triangle(DS)
        invcheck(AF, BF, CS, DS, 4, -512.0, 512.0)

        print('\nCS')
        print('\nDS')
        print('\nDetector Center')

        # if verbose:
        xscalec = np.hypot(AF[1], BF[1])
        yscalec = np.hypot(AF[2], BF[2])

    # compute angles
    xanglec = np.rad2deg(np.arctan2(AF[1], BF[1]))
    yanglec = np.rad2deg(np.arctan2(AF[2], BF[2]))

    if verbose:
        print('Position', V2cen, V3cen)
        print('Scales %10.6f %10.6f' % (xscalec, yscalec))
        print('Angles %10.6f %10.6f' % (xanglec, yanglec))

        # if verbose:
        xcen = 1033 / 2
        ycen = 1025 / 2
        xref = 693.5 - xcen
        yref = 512.5 - ycen
        V2Ref = polynomial.poly(AF, xref, yref, 4) + V2cen
        V3Ref = polynomial.poly(BF, xref, yref, 4) + V3cen
        dV2dx = polynomial.dpdx(AF, xref, yref)
        dV3dx = polynomial.dpdx(BF, xref, yref)
        dV2dy = polynomial.dpdy(AF, xref, yref)
        dV3dy = polynomial.dpdy(BF, xref, yref)
        xangler = np.arctan2(dV2dx, dV3dx)
        yangler = np.arctan2(dV2dy, dV3dy)
        # if verbose:
        print('Axis angles', np.rad2deg(xangler), np.rad2deg(yangler))

        # if verbose:
        # Illum reference position
        xscaler = np.hypot(dV2dx, dV3dx)
        yscaler = np.hypot(dV2dy, dV3dy)
        xangler = np.rad2deg(np.arctan2(dV2dx, dV3dx))
        yangler = np.rad2deg(np.arctan2(dV2dy, dV3dy))

        # if verbose:
        print('\nIllum reference position')
        print('xref=', xref)
        print('Position', V2Ref, V3Ref)
        print('Scales %10.6f %10.6f' % (xscaler, yscaler))
        print('Angles %10.6f %10.6f %10.6f' %
              (xangler, yangler, yangler - xangler))

        # if verbose:
        # Slit position
        xslit = (326.13)
        yslit = (300.70)
        dxslit = xslit - xcen
        dyslit = yslit - ycen
        V2slit = polynomial.poly(AF, dxslit, dyslit, 4) + V2cen
        V3slit = polynomial.poly(BF, dxslit, dyslit, 4) + V3cen
        dV2dx = polynomial.dpdx(AF, dxslit, yslit)
        dV3dx = polynomial.dpdx(BF, dxslit, dyslit)
        dV2dy = polynomial.dpdy(AF, dxslit, dyslit)
        dV3dy = polynomial.dpdy(BF, dxslit, dyslit)
        xangles = np.arctan2(dV2dx, dV3dx)
        yangles = np.arctan2(dV2dy, dV3dy)

        # if verbose:
        print('\nSlit')
        print('Position', dxslit, dyslit)
        print('V2,V3', V2slit, V3slit)
        print('Slit angles', np.rad2deg(xangles), np.rad2deg(yangles))

        # if verbose:
        # Corners
        xc = np.array([-516.0, 516.0, 516.0, -516.0, -516.0])
        yc = np.array([-512.0, -512.0, 512.0, 512.0, -512.0])
        V2c = polynomial.poly(AF, xc, yc, 4)
        V3c = polynomial.poly(BF, xc, yc, 4)
        V2c = V2c + V2cen
        V3c = V3c + V3cen
        # if verbose:
        print('\nCorners')
        print('V2 %10.4f %10.4f %10.4f %10.4f' %
              (V2c[0], V2c[1], V2c[2], V2c[3]))
        print('V3 %10.4f %10.4f %10.4f %10.4f' %
              (V3c[0], V3c[1], V3c[2], V3c[3]))

        # make figure
        pl.figure(1)
        pl.clf()
        pl.title('MIRI Detector')
        pl.plot(V2cen, V3cen, 'r+')
        pl.plot(V2c, V3c, ':')
        pl.grid(True)
        pl.axis('equal')
        pl.plot(V2Ref, V3Ref, 'b+')
        pl.plot(V2slit, V3slit, 'c+')
        pl.gca().invert_xaxis()
        pl.show()

        ## Rotated versions
        print('Angle', yanglec)
        print('Rotated')

    # incorporate rotation in coefficients
    a = np.deg2rad(yanglec)
    AR = AF * np.cos(a) - BF * np.sin(a)
    BR = AF * np.sin(a) + BF * np.cos(a)

    CR = polynomial.prepend_rotation_to_polynomial(CS, yanglec)
    DR = polynomial.prepend_rotation_to_polynomial(DS, yanglec)

    if verbose:
        print('AR')
        polynomial.print_triangle(AR)
        print('BR')
        polynomial.print_triangle(BF)
        print('\n', AR[2], ' near zero')
        # if verbose:
        invcheck(AR, BR, CR, DR, 4, -512.0, 512.0)

        # Check positions using rotated (Ideal) coefficients
        # if verbose:

        xi = polynomial.poly(AR, xc, yc, 4)
        yi = polynomial.poly(BR, xc, yc, 4)
        v2r = xi * np.cos(a) + yi * np.sin(a) + V2cen
        v3r = -xi * np.sin(a) + yi * np.cos(a) + V3cen
        # if verbose:
        print('V2', v2r)
        print('V3', v3r)
        pl.plot(v2r, v3r, '--')

    CRFl = polynomial.flip_x(CR)
    DRFl = polynomial.flip_x(DR)

    # see TR: "polynomial origin being at the detector center with
    # pixel position (516.5, 512.5). "
    detector_center_pixel_x = 516.5
    detector_center_pixel_y = 512.5

    # dictionary holding data written to csv
    csv_data = {}
    csv_data['DET_OSS'] = {}
    csv_data['DET_OSS']['A'] = AR
    csv_data['DET_OSS']['B'] = BR
    csv_data['DET_OSS']['C'] = CR
    csv_data['DET_OSS']['D'] = DR
    csv_data['DET_OSS']['Xref'] = detector_center_pixel_x
    csv_data['DET_OSS']['Yref'] = detector_center_pixel_y
    csv_data['DET_OSS']['Xref_inv'] = V2cen
    csv_data['DET_OSS']['Yref_inv'] = V3cen
    csv_data['DET_OSS']['xAngle'] = xanglec
    csv_data['DET_OSS']['yAngle'] = yanglec
    csv_data['DET_DMF'] = {}
    csv_data['DET_DMF']['A'] = -AR
    csv_data['DET_DMF']['B'] = BR
    csv_data['DET_DMF']['C'] = CRFl
    csv_data['DET_DMF']['D'] = DRFl
    csv_data['DET_DMF']['Xref'] = detector_center_pixel_x
    csv_data['DET_DMF']['Yref'] = detector_center_pixel_y
    csv_data['DET_DMF']['Xref_inv'] = V2cen
    csv_data['DET_DMF']['Yref_inv'] = V3cen
    csv_data['DET_DMF']['xAngle'] = xanglec
    csv_data['DET_DMF']['yAngle'] = yanglec

    return csv_data
Example #7
0
def reorder(pcfName, verbose=False):
    '''Use pcf files
       '''

    # order = 5
    print('\n  =============================================%\n')
    print(pcfName)
    xForward = []
    yForward = []
    xBackward = []
    yBackward = []
    pcf = open(pcfName)  # One of the pcf files
    text = pcf.readline()
    while text != '':
        text = pcf.readline()
        if '*DATE' in text:
            print(pcf.readline())

        if '*FitOrder' in text:
            order = int(pcf.readline())
            terms = (order + 1) * (order + 2) // 2
            print('Order', order, terms, ' terms')

        if '*xForward' in text:
            text = pcf.readline()
            f = text.split()  # Array of terms text strings
            for k in range(terms):
                xForward.append(float(f[k]))
            xForward = np.array(xForward)

        if '*xBackward' in text:
            text = pcf.readline()
            f = text.split()  # Array of terms text strings
            for k in range(terms):
                xBackward.append(float(f[k]))
            xBackward = np.array(xBackward)

        if '*yForward' in text:
            text = pcf.readline()
            f = text.split()  # Array of terms text strings
            for k in range(terms):
                yForward.append(float(f[k]))
            yForward = np.array(yForward)

        if '*yBackward' in text:
            text = pcf.readline()
            f = text.split()  # Array of terms text strings
            for k in range(terms):
                yBackward.append(float(f[k]))
            yBackward = np.array(yBackward)
    pcf.close()

    # Now reorder coefficients
    Aarray = np.zeros((order + 1, order + 1))
    Barray = np.zeros((order + 1, order + 1))
    Carray = np.zeros((order + 1, order + 1))
    Darray = np.zeros((order + 1, order + 1))
    terms = (order + 1) * (order + 2) // 2
    A2 = np.zeros(terms)
    B2 = np.zeros(terms)
    C2 = np.zeros(terms)
    D2 = np.zeros(terms)
    k1 = 0
    for i in range(order + 1):
        for j in range(order + 1 - i):
            Aarray[j, i] = xForward[k1]
            Barray[j, i] = yForward[k1]
            Carray[j, i] = xBackward[k1]
            Darray[j, i] = yBackward[k1]
            k1 += 1
    k2 = 0
    for i in range(order + 1):
        for j in range(i + 1):
            A2[k2] = Aarray[j, i - j]
            B2[k2] = Barray[j, i - j]
            C2[k2] = Carray[j, i - j]
            D2[k2] = Darray[j, i - j]
            k2 += 1

    if verbose:
        print('\n', pcfName)
        print('A')
        polynomial.print_triangle(A2, order=5)
        print('\nB')
        polynomial.print_triangle(B2, order=5)
        print('\nC')
        polynomial.print_triangle(C2, order=5)
        print('\nD')
        polynomial.print_triangle(D2, order=5)

    # Convert V2V3 output polynomials to XAN,YAN type
    # print (year, pcfName)
    # print (pcfName)
    year = '2017'
    if year == '2016' and 'GWA2OTE' in pcfName:

        B2 = -B2
        B2[0] = B2[0] - 0.13
        (C2, D2) = polynomial.TwoStep(C2, D2, [0.0, 1.0, 0.0],
                                      [-0.13, 0.0, -1.0], 5)
        print('\nAdjusted Polynomials')
        print('A')
        polynomial.print_triangle(A2, order=5)
        print('\nB')
        polynomial.print_triangle(B2, order=5)
        print('\nC')
        polynomial.print_triangle(C2, order=5)
        print('\nD')
        polynomial.print_triangle(D2, order=5)

    return (A2, B2, C2, D2)