def main():
    layers = {
        "layer%d" % i: ps.Line(ps.Point(0, a[i]), ps.Point(W, a[i]))
        for i in range(len(a))
    }

    symbols_ell = {
        "l_%d" % i: ps.Text(r"$\ell_%d$" % i, ps.Point(-0.5, a[i]))
        for i in range(1, len(a) - 1)
    }

    for text in symbols_ell.values():
        text.style.font_size = 24

    symbols_a = {
        "a_%d" % i: ps.Text("$a_%d$" % i, ps.Point(W / 2, 0.5 * (a[i] + a[i + 1])))
        for i in range(len(a) - 1)
    }

    for text in symbols_a.values():
        text.style.font_size = 24

    sides = {
        "left": ps.Line(ps.Point(0, 0), ps.Point(0, H)),
        "right": ps.Line(ps.Point(W, 0), ps.Point(W, H)),
    }
    d = sides.copy()
    d.update(layers)
    d.update(symbols_ell)
    d.update(symbols_a)
    model = ps.Composition(d)

    fig = ps.Figure(-1, W + 1, -1, H + 1, backend=MatplotlibBackend)
    fig.add(model)
    fig.show()
Example #2
0
def main() -> None:
    wheel1 = (
        ps.Circle(ps.Point(w_1, R), R)
        .set_fill_color(ps.Style.Color.BLUE)
        .set_line_width(6)
    )
    wheel2 = wheel1.translate(ps.Point(L, 0))
    under = ps.Rectangle(ps.Point(w_1 - 2 * R, 2 * R), 2 * R + L + 2 * R, H)
    under.style.fill_color = ps.Style.Color.RED
    under.style.line_color = ps.Style.Color.RED
    over = ps.Rectangle(ps.Point(w_1, 2 * R + H), 2.5 * R, 1.25 * H).set_fill_color(
        ps.Style.Color.WHITE
    )
    over.style.line_width = 14
    over.style.line_color = ps.Style.Color.RED
    over.style.fill_pattern = ps.Style.FillPattern.UP_RIGHT_TO_LEFT

    ground = ps.Wall([ps.Point(w_1 - L, 0), ps.Point(w_1 + 3 * L, 0)], -0.3 * R)
    ground.style.fill_pattern = ps.Style.FillPattern.UP_LEFT_TO_RIGHT

    model = ps.Composition(
        {
            "wheel1": wheel1,
            "wheel2": wheel2,
            "under": under,
            "over": over,
            "ground": ground,
        }
    )

    fig = ps.Figure(
        0, w_1 + 2 * L + 3 * R, -1, 2 * R + 3 * H, backend=MatplotlibBackend
    )
    fig.add(model)
    fig.show()
Example #3
0
def main():
    code = ps.Axis(ps.Point(1, 1), 3, "x")
    code2 = ps.Axis(ps.Point(1, 1), 3, "y")
    model = ps.Composition(dict(x=code, y=code2))

    fig = ps.Figure(0, 5, 0, 5, backend=MatplotlibBackend)
    fig.add(model)
    fig.show()
Example #4
0
def main() -> None:
    c = ps.Point(w_1, R)

    wheel1 = ps.Circle(c, R)
    wheel2 = wheel1.translate(ps.Point(L, 0))
    under = ps.Rectangle(ps.Point(w_1 - 2 * R, 2 * R), 2 * R + L + 2 * R, H)
    over = ps.Rectangle(ps.Point(w_1, 2 * R + H), 2.5 * R,
                        1.25 * H).set_fill_color(ps.Style.Color.WHITE)
    ground = ps.Wall(
        [ps.Point(w_1 - L, 0), ps.Point(w_1 + 3 * L, 0)], -0.3 * R)
    ground.style.fill_pattern = ps.Style.FillPattern.UP_RIGHT_TO_LEFT

    vehicle = ps.Composition({
        "wheel1": wheel1,
        "wheel2": wheel2,
        "under": under,
        "over": over,
        "ground": ground,
    })

    vehicle.style.line_color = ps.Style.Color.RED

    wheel1_dim = ps.LinearDimension("$w_1$", c + ps.Point(2, 0.25), c)
    hdp = w_1 + L + 3 * R  # horizontal dimension position
    R_dim = ps.LinearDimension("$R$", ps.Point(hdp, 0), ps.Point(hdp, R))
    H_dim = ps.LinearDimension("$H$", ps.Point(hdp, 2 * R),
                               ps.Point(hdp, 2 * R + H))
    H2_dim = ps.LinearDimension("$\\frac{5}{4}H$", ps.Point(hdp, 2 * R + H),
                                ps.Point(hdp, 2 * R + (9 / 4) * H))

    vdp = 2 * R + H + 3 / 2 * H
    R2_dim = ps.LinearDimension("$2R$", ps.Point(w_1 - 2 * R, vdp),
                                ps.Point(w_1, vdp))
    L_dim = ps.LinearDimension("$L$", ps.Point(w_1, vdp),
                               ps.Point(w_1 + L, vdp))
    R3_dim = ps.LinearDimension("$2R$", ps.Point(w_1 + L, vdp),
                                ps.Point(w_1 + L + 2 * R, vdp))

    dimensions = ps.Composition({
        "wheel1_dim": wheel1_dim,
        "R_dim": R_dim,
        "H_dim": H_dim,
        "H2_dim": H2_dim,
        "R2_dim": R2_dim,
        "L_dim": L_dim,
        "R3_dim": R3_dim,
    })

    model = ps.Composition({"vehicle": vehicle, "dimensions": dimensions})

    figure = ps.Figure(0,
                       w_1 + 2 * L + 3 * R,
                       -1,
                       2 * R + 3 * H,
                       backend=MatplotlibBackend)
    figure.add(model)
    figure.show()
Example #5
0
def main() -> None:
    code = ps.Text("print 'Hello, World!'", ps.Point(2.5, 1.5))

    code.style.fontsize = 24
    code.style.font_family = ps.TextStyle.FontFamily.MONO
    code.style.fill_color = ps.TextStyle.Color.GREY

    fig = ps.Figure(0.0, 5.0, 0.0, 3.0, backend=MatplotlibBackend)
    fig.add(code)
    fig.show()
Example #6
0
def main():
    t = np.linspace(0, 10, 101)
    sol = simulate_pendulum()

    def anim_func(i: float) -> ps.Composition:
        return pendulum(ps.Angle(sol[i, 0]), 1, -1, sol[i, 1])

    fig = ps.Figure(0.0, W, 0.0, H, backend=MatplotlibBackend)
    fig.animate(anim_func, (0, 101))
    fig.save_animation("pendulum.mp4")
Example #7
0
def main() -> None:
    rect = ps.Rectangle(ps.Point(1, 1), 4, 6)

    dim_w = LinearDimension(r"$w$", rect.lower_left, rect.lower_right)
    dim_h = LinearDimension(r"$h$", rect.lower_right, rect.upper_right)

    fig = ps.Figure(0, 8, 0, 8, backend=MatplotlibBackend)
    fig.add(rect)
    fig.add(dim_w)
    fig.add(dim_h)
    fig.show()
Example #8
0
def main() -> None:
    i = 1
    shapes_dict = {}
    for fill_pattern in ps.Style.FillPattern:
        logging.info("Fill Pattern: %s", fill_pattern)
        name: str = "Rectangle.%d" % i
        rectangle = ps.Rectangle(ps.Point(i, 1), 1,
                                 1).set_fill_pattern(fill_pattern)
        shapes_dict[name] = rectangle
        i = i + 1.5

    shapes = ps.Composition(shapes_dict)

    fig = ps.Figure(0.0, 20.0, 0.0, 3.0, backend=MatplotlibBackend)
    fig.add(shapes)
    fig.show()
def main() -> None:
    wall = ps.Wall(
        [
            ps.Point(x, gaussian(x))
            for x in np.linspace(W + L, 0, 51, endpoint=False)
        ],
        0.3,
    )
    wall.style.line_color = ps.Style.Color.BROWN

    inlet_profile = ps.VelocityProfile(ps.Point(0, 0), H, velocity_profile, 5)
    inlet_profile.style.line_color = ps.Style.Color.BLUE

    symmetry_line = ps.Line(ps.Point(0, H), ps.Point(W + L, H))
    symmetry_line.style.line_style = ps.Style.LineStyle.DASHED

    outlet = ps.Line(ps.Point(W + L, 0), ps.Point(W + L, H))
    outlet.style.line_style = ps.Style.LineStyle.DASHED

    model = ps.Composition({
        "bottom": wall,
        "inlet": inlet_profile,
        "symmetry line": symmetry_line,
        "outlet": outlet,
    })

    velocity = velocity_profile(H / 2.0)
    line = ps.Line(ps.Point(W - 2.5 * sigma, 0), ps.Point(W + 2.5 * sigma, 0))
    line.style.line_style = ps.Style.LineStyle.DASHED
    symbols = {
        "alpha":
        ps.LinearDimension(r"$\alpha$", ps.Point(W, 0), ps.Point(W, alpha)),
        "W":
        ps.LinearDimension(r"$W$", ps.Point(0, -0.5), ps.Point(W, -0.5)),
        "L":
        ps.LinearDimension(r"$L$", ps.Point(W, -0.5), ps.Point(W + L, -0.5)),
        "v(y)":
        ps.Text("$v(y)$  ", ps.Point(H / 2.0, velocity.x)),
        "dashed line":
        line,
    }
    symbols = ps.Composition(symbols)

    fig = ps.Figure(0, W + L + 1, -2, H + 1, backend=MatplotlibBackend)
    fig.add(model)
    fig.add(symbols)
    fig.show()
Example #10
0
def main() -> None:
    d = make_dashpot(0)
    s = make_spring(0)

    M = ps.Rectangle(ps.Point(0, H), 4 * H, 4 * H).set_line_width(4)
    left_wall = ps.Rectangle(ps.Point(-L, 0), H / 10, L).set_fill_pattern(
        ps.Style.FillPattern.UP_LEFT_TO_RIGHT)
    ground = ps.Wall([ps.Point(-L / 2, 0), ps.Point(L, 0)], thickness=-H / 10)
    wheel1 = ps.Circle(ps.Point(H, H / 2), H / 2)
    wheel2 = wheel1.translate(ps.Point(2 * H, 0))

    fontsize = 24
    text_m = ps.Text("$m$", ps.Point(2 * H, H + 2 * H))
    text_m.style.font_size = fontsize
    text_ku = ps.Text("$ku$", ps.Point(-L / 2, H + 4 * H))
    text_ku.style.font_size = fontsize
    text_bv = ps.Text("$bu'$", ps.Point(-L / 2, H))
    text_bv.style.font_size = fontsize
    x_axis = ps.Axis(ps.Point(2 * H, L), H, "$u(t)$")
    x_axis_start = ps.Line(ps.Point(2 * H, L - H / 4),
                           ps.Point(2 * H, L + H / 4)).set_line_width(4)

    model = ps.Composition({
        "spring": s,
        "mass": M,
        "left wall": left_wall,
        "ground": ground,
        "wheel1": wheel1,
        "wheel2": wheel2,
        "text_m": text_m,
        "text_ku": text_ku,
        "x_axis": x_axis,
        "x_axis_start": x_axis_start,
    })

    fig = ps.Figure(-L, x_max, -1, L + H, backend=MatplotlibBackend)
    fig.add(model)

    damping = ps.Composition({"dashpot": d, "text_bv": text_bv})

    # or fig = Composition(dict(fig=fig, dashpot=d, text_bv=text_bv))
    fig.add(damping)
    fig.show()
Example #11
0
def main() -> None:
    i = 1
    shapes = {}
    for line_color in ps.Style.Color:
        j = 1
        for fill_color in ps.Style.Color:
            logging.info("Line Color: %s", line_color)
            name: str = "Rectangle.%d.%d" % (i, j)
            rectangle = ps.Rectangle(ps.Point(i, j), 1, 1)
            rectangle.style.line_width = 3.0
            rectangle.style.line_color = line_color
            rectangle.style.fill_color = fill_color
            shapes[name] = rectangle
            j = j + 1
        i = i + 1

    model = ps.Composition(shapes)

    fig = ps.Figure(0, 12, 0, 12, backend=MatplotlibBackend)
    fig.add(model)
    fig.show()
Example #12
0
def main() -> None:
    layers = {
        "layer%d" % i: ps.Line(ps.Point(0, a[i]), ps.Point(W, a[i]))
        for i in range(len(a))
    }
    symbols_q = {
        "Omega_k%d" % i: ps.Text(r"$\Omega_%d$: $k_%d$" % (i, i),
                                 ps.Point(W / 2, 0.5 * (a[i] + a[i + 1])))
        for i in range(len(a) - 1)
    }

    sides = {
        "left": ps.Line(ps.Point(0, 0), ps.Point(0, H)),
        "right": ps.Line(ps.Point(W, 0), ps.Point(W, H)),
    }
    d = sides.copy()
    d.update(layers)
    d.update(symbols_q)
    model = ps.Composition(d)

    fig = ps.Figure(-1, W + 1, 1, H + 1, backend=MatplotlibBackend)
    fig.add(model)
    fig.show()
symbols_ell = {
    "l_%d" % i: ps.Text(r"$\ell_%d$" % i, ps.Point(-0.5, a[i]))
    for i in range(1,
                   len(a) - 1)
}

for text in symbols_ell.values():
    text.style.font_size = 24

symbols_a = {
    "a_%d" % i: ps.Text("$a_%d$" % i, ps.Point(W / 2, 0.5 * (a[i] + a[i + 1])))
    for i in range(len(a) - 1)
}

for text in symbols_a.values():
    text.style.font_size = 24

sides = {
    "left": ps.Line(ps.Point(0, 0), ps.Point(0, H)),
    "right": ps.Line(ps.Point(W, 0), ps.Point(W, H)),
}
d = sides.copy()
d.update(layers)
d.update(symbols_ell)
d.update(symbols_a)
model = ps.Composition(d)

fig = ps.Figure(-1, W + 1, -1, H + 1, backend=MatplotlibBackend)
fig.add(model)
fig.show()
Example #14
0
import pysketcher as ps
from pysketcher.backend.matplotlib.matplotlib_backend import MatplotlibBackend

figure = ps.Figure(0.0, 5.0, 0.0, 5.0, MatplotlibBackend)

a = ps.Point(1.0, 3.0)
b = ps.Point(4.0, 3.0)

line = ps.Line(a, b)
figure.add(line)
figure.show()


# End Here
import os  # noqa: E402, I100

from .utils.change_extension import change_extension  # noqa: E402

filename = change_extension(__file__, "png")
figure.save(os.path.join("images", filename))
Example #15
0
text_bv = ps.Text("$bu'$", ps.Point(-L / 2, H))
text_bv.style.font_size = fontsize
x_axis = ps.Axis(ps.Point(2 * H, L), H, "$u(t)$", label_spacing=(0.04, -0.01))
x_axis_start = ps.Line(
    ps.Point(2 * H, L - H / 4), ps.Point(2 * H, L + H / 4)
).set_line_width(4)

model = ps.Composition(
    {
        "spring": s,
        "mass": M,
        "left wall": left_wall,
        "ground": ground,
        "wheel1": wheel1,
        "wheel2": wheel2,
        "text_m": text_m,
        "text_ku": text_ku,
        "x_axis": x_axis,
        "x_axis_start": x_axis_start,
    }
)

fig = ps.Figure(-L, x_max, -1, L + H, backend=MatplotlibBackend)
fig.add(model)

damping = ps.Composition({"dashpot": d, "text_bv": text_bv})

# or fig = Composition(dict(fig=fig, dashpot=d, text_bv=text_bv))
fig.add(damping)
fig.show()
Example #16
0
import pysketcher as ps
from pysketcher.backend.matplotlib import MatplotlibBackend

rect = ps.Rectangle(ps.Point(4, 4), 10, 15)

fig = ps.Figure(0, 20, 0, 20, backend=MatplotlibBackend)
fig.add(rect)
fig.show()
Example #17
0
    ps.Axis(ps.Point(0.0, 0.0), 0.8 * u_max, "$u$", rotation_angle=np.pi / 2),
})

h = 0.03 * u_max  # tickmarks height
i_nodes = {}
for i, t in enumerate(t_mesh):
    i_nodes[i] = ps.Composition({
        "node":
        ps.Line(ps.Point(t, h), ps.Point(t, -h)),
        "name":
        ps.Text("$t_%d$" % i, ps.Point(t, -3.5 * h)),
    })

nodes = ps.Composition(i_nodes)

fig = ps.Figure(t_min, t_max, u_min, u_max, backend=MatplotlibBackend)

# Draw t_mesh with discrete u points
illustration = ps.Composition(dict(
    u=u_discrete,
    # mesh=nodes,
    axes=axes,
))
fig.erase()
fig.add(illustration)
fig.show()

# Add exact u line (u is a Spline Shape that applies 500 intervals by default
# for drawing the curve)
exact = u.set_line_style(ps.Style.LineStyle.DASHED).set_line_width(1)
Example #18
0
import logging

import pysketcher as ps
from pysketcher.backend.matplotlib import MatplotlibBackend

i = 1
shapes_dict = {}
for fill_pattern in ps.Style.FillPattern:
    logging.info("Fill Pattern: %s", fill_pattern)
    name: str = "Rectangle.%d" % i
    rectangle = ps.Rectangle(ps.Point(i, 1), 1,
                             1).set_fill_pattern(fill_pattern)
    shapes_dict[name] = rectangle
    i = i + 1.5

shapes = ps.Composition(shapes_dict)

fig = ps.Figure(0.0, 20.0, 0.0, 3.0, backend=MatplotlibBackend)
fig.add(shapes)
fig.show()
Example #19
0
def main() -> None:
    u = ps.SketchyFunc3()
    Nt = 5
    t_mesh = np.linspace(0, 6, Nt + 1)

    # Add 20% space to the left and 30% to the right of the coordinate system
    t_axis_extent = t_mesh[-1] - t_mesh[0]
    logging.info(t_axis_extent)
    t_min = t_mesh[0] - 0.2 * t_axis_extent
    logging.info(t_min)
    t_max = t_mesh[-1] + 0.3 * t_axis_extent
    logging.info(t_max)
    u_max = 1.3 * max([u(t) for t in t_mesh])
    logging.info(u_max)
    u_min = -0.2 * u_max
    logging.info(u_max)

    r = 0.005 * (t_max - t_min)  # radius of circles placed at mesh points
    # import random; random.seed(12)
    perturbations = [0, 0.1, 0.1, 0.2, -0.4, -0.1]
    u_points = {}
    u_values = []
    for i, t in enumerate(t_mesh):
        u_value = u(t) + perturbations[i]
        u_values.append(u_value)
        circle = ps.Circle(ps.Point(t, u_value),
                           r).set_fill_color(ps.Style.Color.BLACK)
        text = ps.Text(
            "$u^%d$" % i,
            ps.Point(t, u_value) +
            (ps.Point(0.0, 3 * r) if i > 0 else ps.Point(-3 * r, 0.0)),
        )
        u_points[i] = ps.Composition({"circle": circle, "u_point": text})
    u_discrete = ps.Composition(u_points)

    i_lines = {}
    for i in range(1, len(t_mesh)):
        i_lines[i] = ps.Line(ps.Point(t_mesh[i - 1], u_values[i - 1]),
                             ps.Point(t_mesh[i],
                                      u_values[i])).set_line_width(1)
    interpolant = ps.Composition(i_lines)

    x_axis_extent: float = t_mesh[-1] + 0.2 * t_axis_extent
    logging.info(x_axis_extent)
    axes = ps.Composition({
        "x":
        ps.Axis(
            ps.Point(0.0, 0.0),
            x_axis_extent,
            "$t$",
        ),
        "y":
        ps.Axis(ps.Point(0.0, 0.0),
                0.8 * u_max,
                "$u$",
                rotation_angle=np.pi / 2),
    })

    h = 0.03 * u_max  # tickmarks height
    i_nodes = {}
    for i, t in enumerate(t_mesh):
        i_nodes[i] = ps.Composition({
            "node":
            ps.Line(ps.Point(t, h), ps.Point(t, -h)),
            "name":
            ps.Text("$t_%d$" % i, ps.Point(t, -3.5 * h)),
        })

    nodes = ps.Composition(i_nodes)

    fig = ps.Figure(t_min, t_max, u_min, u_max, backend=MatplotlibBackend)

    # Draw t_mesh with discrete u points
    illustration = ps.Composition(dict(
        u=u_discrete,
        mesh=nodes,
        axes=axes,
    ))
    fig.erase()
    fig.add(illustration)
    fig.show()

    # Add exact u line (u is a Spline Shape that applies 500 intervals by default
    # for drawing the curve)
    exact = u.set_line_style(ps.Style.LineStyle.DASHED).set_line_width(1)

    fig.add(exact)
    fig.show()

    # Add linear interpolant
    fig.add(interpolant)
    fig.show()

    # Linear interpolant without exact, smooth line
    fig.erase()
    fig.add(illustration)
    fig.add(interpolant)
    fig.show()
Example #20
0
def main():
    u = ps.SketchyFunc3()
    t_mesh = np.linspace(0, 6, Nt + 1)
    t_mesh_staggered = np.linspace(0.5 * (t_mesh[0] + t_mesh[1]),
                                   0.5 * (t_mesh[-2] + t_mesh[-1]), Nt)

    # Add 20% space to the left and 30% to the right of the coordinate system
    t_axis_extent = t_mesh[-1] - t_mesh[0]
    t_min = t_mesh[0] - 0.2 * t_axis_extent
    t_max = t_mesh[-1] + 0.3 * t_axis_extent
    u_max = 1.3 * max([u(t) for t in t_mesh])
    u_min = -0.2 * u_max

    r = 0.005 * (t_max - t_min)  # radius of circles placed at mesh Points
    u_discrete = ps.Composition({
        i: ps.Composition(
            dict(
                circle=ps.Circle(ps.Point(t, u(t)),
                                 r).set_fill_color(ps.Style.Color.BLACK),
                u_Point=ps.Text(
                    "$u_%d$" % i,
                    ps.Point(t, u(t)) +
                    (ps.Point(0, 5 * r) if i > 0 else ps.Point(-5 * r, 0)),
                ),
            ))
        for i, t in enumerate(t_mesh)
    })

    # u' = v
    # v = u.smooth.derivative(n=1)
    v = ps.SketchyFunc4()

    v_discrete = ps.Composition({
        i: ps.Composition(
            dict(
                circle=ps.Circle(ps.Point(t, v(t)),
                                 r).set_fill_color(ps.Style.Color.RED),
                v_Point=ps.Text(
                    r"$v_{%d/2}$" % (2 * i + 1),
                    ps.Point(t, v(t)) + (ps.Point(0, 5 * r)),
                ),
            ))
        for i, t in enumerate(t_mesh_staggered)
    })

    axes = ps.Composition(
        dict(
            x=ps.Axis(ps.Point(0, 0), t_mesh[-1] + 0.2 * t_axis_extent, "$t$"),
            y=ps.Axis(ps.Point(0, 0),
                      0.8 * u_max,
                      "$u,v$",
                      rotation_angle=np.pi / 2),
        ))

    h = 0.03 * u_max  # tickmarks height
    u_nodes = ps.Composition({
        i: ps.Composition(
            dict(
                node=ps.Line(ps.Point(t, h), ps.Point(t, -h)),
                name=ps.Text("$t_%d$" % i, ps.Point(t, -3.5 * h)),
            ))
        for i, t in enumerate(t_mesh)
    })
    v_nodes = ps.Composition({
        i: ps.Composition(
            dict(
                node=ps.Line(ps.Point(t, h / 1.5), ps.Point(
                    t, -h / 1.5)).set_line_color(ps.Style.Color.RED),
                name=ps.Text(r"$t_{%d/2}$" % (2 * i + 1),
                             ps.Point(t, -3.5 * h)),
            ))
        for i, t in enumerate(t_mesh_staggered)
    })
    illustration = ps.Composition(
        dict(u=u_discrete,
             v=v_discrete,
             u_mesh=u_nodes,
             v_mesh=v_nodes,
             axes=axes))

    fig = ps.Figure(t_min, t_max, u_min, u_max, backend=MatplotlibBackend)

    # Staggered t mesh and u and v Points
    fig.add(illustration)
    fig.show()

    # Exact u line (u is a Spline Shape that applies 500 intervals by default
    # for drawing the curve)
    u_exact = u.set_line_style(ps.Style.LineStyle.DASHED).set_line_width(1)
    fig.add(u_exact)
    fig.show()

    # v = Curve(u.xcoor, v(u.xcoor))
    t_mesh_staggered_fine = np.linspace(t_mesh_staggered[0],
                                        t_mesh_staggered[-1], 501)
    t_mesh_staggered_points = [
        ps.Point(x, v(x)) for x in t_mesh_staggered_fine
    ]
    v_exact = (ps.Curve(t_mesh_staggered_points).set_line_style(
        ps.Style.LineStyle.DASHED).set_line_width(1))
    fig.add(v_exact)
    fig.show()
Example #21
0
                            ps.Point(hdp, 2 * R + H))
H2_dim = ps.DistanceWithText("$\\frac{5}{4}H$", ps.Point(hdp, 2 * R + H),
                             ps.Point(hdp, 2 * R + (9 / 4) * H))

vdp = 2 * R + H + 3 / 2 * H
R2_dim = ps.DistanceWithText("$2R$", ps.Point(w_1 - 2 * R, vdp),
                             ps.Point(w_1, vdp))
L_dim = ps.DistanceWithText("$L$", ps.Point(w_1, vdp), ps.Point(w_1 + L, vdp))
R3_dim = ps.DistanceWithText("$2R$", ps.Point(w_1 + L, vdp),
                             ps.Point(w_1 + L + 2 * R, vdp))

dimensions = ps.Composition({
    "wheel1_dim": wheel1_dim,
    "R_dim": R_dim,
    "H_dim": H_dim,
    "H2_dim": H2_dim,
    "R2_dim": R2_dim,
    "L_dim": L_dim,
    "R3_dim": R3_dim,
})

model = ps.Composition({"vehicle": vehicle, "dimensions": dimensions})

figure = ps.Figure(0,
                   w_1 + 2 * L + 3 * R,
                   -1,
                   2 * R + 3 * H,
                   backend=MatplotlibBackend)
figure.add(model)
figure.show()
Example #22
0
    "outlet": outlet,
})

velocity = velocity_profile(H / 2.0)
line = ps.Line(ps.Point(W - 2.5 * sigma, 0), ps.Point(W + 2.5 * sigma, 0))
line.style.line_style = ps.Style.LineStyle.DASHED
symbols = {
    "alpha":
    ps.DistanceWithText(r"$\alpha$", ps.Point(W, 0), ps.Point(W, alpha)),
    "W":
    ps.DistanceWithText(r"$W$",
                        ps.Point(0, -0.5),
                        ps.Point(W, -0.5),
                        spacing=-1.0 / 3),
    "L":
    ps.DistanceWithText(r"$L$",
                        ps.Point(W, -0.5),
                        ps.Point(W + L, -0.5),
                        spacing=-1.0 / 3),
    "v(y)":
    ps.Text("$v(y)$  ", ps.Point(H / 2.0, velocity.x)),
    "dashed line":
    line,
}
symbols = ps.Composition(symbols)

fig = ps.Figure(0, W + L + 1, -2, H + 1, backend=MatplotlibBackend)
fig.add(model)
fig.add(symbols)
fig.show()
Example #23
0
import logging

import pysketcher as ps
from pysketcher.backend.matplotlib import MatplotlibBackend

logging.basicConfig(level=logging.INFO)

i = 1
shapes = {}
for line_color in ps.Style.Color:
    j = 1
    for fill_color in ps.Style.Color:
        logging.info("Line Color: %s", line_color)
        name: str = "Rectangle.%d.%d" % (i, j)
        rectangle = ps.Rectangle(ps.Point(i, j), 1, 1)
        rectangle.style.line_width = 3.0
        rectangle.style.line_color = line_color
        rectangle.style.fill_color = fill_color
        shapes[name] = rectangle
        j = j + 1
    i = i + 1

model = ps.Composition(shapes)

fig = ps.Figure(0, 12, 0, 12, backend=MatplotlibBackend)
fig.add(model)
fig.show()
Example #24
0
set_dashed_thin_blackline(vertical, path)
theta.style.arrow = ps.Style.ArrowStyle.DOUBLE
mass.style.fill_color = ps.Style.Color.BLUE

model = ps.Composition({
    "vertical": vertical,
    "path": path,
    "theta": theta,
    "rod": rod,
    "body": mass,
    "m": mass_symbol,
    "g": gravity,
    "L": length,
})

fig = ps.Figure(0.0, W, 0.0, H, backend=MatplotlibBackend)
fig.add(model)
fig.show()

vertical2 = ps.Line(rod.start, rod.start + ps.Point(0.0, -L / 3.0))
set_dashed_thin_blackline(vertical2)
set_dashed_thin_blackline(rod)
angle2 = ps.ArcWithText(r"$\theta$",
                        rod.start,
                        L / 6,
                        -np.pi / 2,
                        a,
                        text_spacing=1 / 30.0)
angle2.style.arrow = ps.Style.ArrowStyle.DOUBLE

mg_force = ps.Force(
Example #25
0
    dict(
        tangent=centered_tangent,
        point1=cb,
        point2=cf,
        point=c,
        coor=centered_lines2,
        name=ps.Text("centered", centered_tangent.end + ps.Point(0.1, 0)).set_alignment(
            ps.TextStyle.Alignment.LEFT
        ),
    )
)

exact = ps.Composition(dict(graph=f, tangent=exact_tangent))
forward = ps.Composition(dict(difference=forward, exact=exact))
backward = ps.Composition(dict(difference=backward, exact=exact))
centered = ps.Composition(dict(difference=centered, exact=exact))

fig = ps.Figure(0.0, 7.0, 1.0, 6.0, backend=MatplotlibBackend)

for model in forward, backward, centered:
    fig.erase()
    fig.add(model)
    fig.add(mesh)
    fig.show()

# Crank-Nicolson around t_n+1/2
fig.erase()
fig.add(centered)
fig.add(mesh_cn)
fig.show()