def compute_trajectory(pose_vec, gt_traj, method='odom'):
    est_traj = [gt_traj[0]]
    cum_dist = [0]
    for i in range(0, pose_vec.shape[0]):
        #classically estimated traj
        dT = SE3.exp(pose_vec[i])
        new_est = SE3.as_matrix(
            (dT.dot(SE3.from_matrix(est_traj[i], normalize=True).inv())).inv())
        est_traj.append(new_est)
        cum_dist.append(cum_dist[i] + np.linalg.norm(dT.trans))

    gt_traj_se3 = [SE3.from_matrix(T, normalize=True) for T in gt_traj]
    est_traj_se3 = [SE3.from_matrix(T, normalize=True) for T in est_traj]

    tm_est = TrajectoryMetrics(gt_traj_se3, est_traj_se3, convention='Twv')
    est_mean_trans, est_mean_rot = tm_est.mean_err()
    est_mean_rot = (est_mean_rot * 180 / np.pi).round(3)
    est_mean_trans = est_mean_trans.round(3)

    seg_lengths = list(range(100, 801, 100))
    _, seg_errs_est = tm_est.segment_errors(seg_lengths, rot_unit='rad')

    print('trans. rel. err: {}, rot. rel. err: {}'.format(
        np.mean(tm_est.rel_errors()[0]), np.mean(tm_est.rel_errors()[1])))

    rot_seg_err = (100 * np.mean(seg_errs_est[:, 2]) * 180 / np.pi).round(3)
    trans_seg_err = (np.mean(seg_errs_est[:, 1]) * 100).round(3)

    if np.isnan(trans_seg_err):
        max_dist = cum_dist[-1] - cum_dist[-1] % 100 + 1 - 100
        print('max dist', max_dist)
        seg_lengths = list(range(100, int(max_dist), 100))
        _, seg_errs_est = tm_est.segment_errors(seg_lengths, rot_unit='rad')

        rot_seg_err = (100 * np.mean(seg_errs_est[:, 2]) * 180 /
                       np.pi).round(3)
        trans_seg_err = (np.mean(seg_errs_est[:, 1]) * 100).round(3)

    print("{} mean trans. error: {} | mean rot. error: {}".format(
        method, est_mean_trans, est_mean_rot))
    print("{} mean Segment Errors: {} (trans, %) | {} (rot, deg/100m)".format(
        method, trans_seg_err, rot_seg_err))

    errors = (est_mean_trans, est_mean_rot, trans_seg_err, rot_seg_err)

    return np.array(est_traj), np.array(gt_traj), errors, np.array(cum_dist)
def generate_trajectory_metrics(gt_traj, est_traj, name='',seq='', mode=''):
    gt_traj_se3 = [SE3.from_matrix(T,normalize=True) for T in gt_traj]
    est_traj_se3 = [SE3.from_matrix(T, normalize=True) for T in est_traj]
    tm = TrajectoryMetrics(gt_traj_se3, est_traj_se3, convention = 'Twv')
    
    est_mATE_trans, est_mATE_rot = tm.mean_err()
    est_mATE_rot = est_mATE_rot*180/np.pi
    print("{} ({}) mean trans. error: {} | mean rot. error: {}".format(name, mode, est_mATE_trans, est_mATE_rot))
    
    seg_lengths = list(range(100,801,100))
    _, est_seg_errs = tm.segment_errors(seg_lengths, rot_unit='rad')
    est_seg_err_trans = np.mean(est_seg_errs[:,1])*100
    est_seg_err_rot = 100*np.mean(est_seg_errs[:,2])*180/np.pi
    print("{} ({}) mean Segment Errors: {} (trans, %) | {} (rot, deg/100m)".format(name, mode, est_seg_err_trans, est_seg_err_rot) )
    return tm, (seq, name, mode, est_mATE_trans.round(3), est_mATE_rot.round(3), est_seg_err_trans.round(3), est_seg_err_rot.round(3))
Example #3
0
def test_trajectory(device, pose_model, spatial_trans, dset, epoch):
    pose_model.train(False)  # Set model to evaluate mode
    pose_model.eval()        #used for batch normalization  # Set model to training mode
    spatial_trans.train(False)  
    spatial_trans.eval()     
    
    #initialize the relevant outputs
    full_corr_lie_alg_stacked, rot_corr_lie_alg_stacked, gt_lie_alg_stacked, vo_lie_alg_stacked, corrections_stacked, gt_corrections_stacked= \
            np.empty((0,6)), np.empty((0,6)), np.empty((0,6)), np.empty((0,6)), np.empty((0,6)), np.empty((0,6))

    for data in dset:
        imgs, gt_lie_alg, intrinsics, vo_lie_alg, gt_correction = data
        gt_lie_alg = gt_lie_alg.type(torch.FloatTensor).to(device)   
        vo_lie_alg = vo_lie_alg.type(torch.FloatTensor).to(device)
        img_list = []
        for im in imgs:              
            img_list.append(im.to(device))

        corr, exp_mask, disp = pose_model(img_list[0:3], vo_lie_alg)
        exp_mask, disp = exp_mask[0], disp[0][:,0]
        corr_rot = torch.clone(corr)
        corr_rot[:,0:3]=0

        corrected_pose = se3_log_exp(corr, vo_lie_alg)
        corrected_pose_rot_only = se3_log_exp(corr_rot, vo_lie_alg)
        
        
        corrections_stacked = np.vstack((corrections_stacked, corr.cpu().detach().numpy()))
        gt_corrections_stacked = np.vstack((gt_corrections_stacked, gt_correction.cpu().detach().numpy()))
        full_corr_lie_alg_stacked = np.vstack((full_corr_lie_alg_stacked, corrected_pose.cpu().detach().numpy()))
        rot_corr_lie_alg_stacked = np.vstack((rot_corr_lie_alg_stacked, corrected_pose_rot_only.cpu().detach().numpy()))
        gt_lie_alg_stacked = np.vstack((gt_lie_alg_stacked, gt_lie_alg.cpu().detach().numpy()))
        vo_lie_alg_stacked = np.vstack((vo_lie_alg_stacked, vo_lie_alg.cpu().detach().numpy()))

    est_traj, corr_traj, corr_traj_rot, gt_traj = [],[],[],[]
    gt_traj = dset.dataset.raw_gt_trials[0]
    est_traj.append(gt_traj[0])
    corr_traj.append(gt_traj[0])
    corr_traj_rot.append(gt_traj[0])

    cum_dist = [0]
    for i in range(0,full_corr_lie_alg_stacked.shape[0]):
        #classically estimated traj
        dT = SE3.exp(vo_lie_alg_stacked[i])
        new_est = SE3.as_matrix((dT.dot(SE3.from_matrix(est_traj[i],normalize=True).inv())).inv())
        est_traj.append(new_est)
        cum_dist.append(cum_dist[i]+np.linalg.norm(dT.trans))

        #corrected traj (rotation only)
        dT = SE3.exp(rot_corr_lie_alg_stacked[i])
        new_est = SE3.as_matrix((dT.dot(SE3.from_matrix(corr_traj_rot[i],normalize=True).inv())).inv())
        corr_traj_rot.append(new_est)
#        
#        
#        #corrected traj (full pose)
        dT = SE3.exp(full_corr_lie_alg_stacked[i])
        new_est = SE3.as_matrix((dT.dot(SE3.from_matrix(corr_traj[i],normalize=True).inv())).inv())
        corr_traj.append(new_est)

    gt_traj_se3 = [SE3.from_matrix(T,normalize=True) for T in gt_traj]
    est_traj_se3 = [SE3.from_matrix(T,normalize=True) for T in est_traj]
    corr_traj_se3 = [SE3.from_matrix(T,normalize=True) for T in corr_traj]
    corr_traj_rot_se3 = [SE3.from_matrix(T,normalize=True) for T in corr_traj_rot]
    
    tm_est = TrajectoryMetrics(gt_traj_se3, est_traj_se3, convention = 'Twv')
    tm_corr = TrajectoryMetrics(gt_traj_se3, corr_traj_se3, convention = 'Twv')
    tm_corr_rot = TrajectoryMetrics(gt_traj_se3, corr_traj_rot_se3, convention = 'Twv')
    
    if epoch >= 0:
        est_mean_trans, est_mean_rot = tm_est.mean_err()
        corr_mean_trans, corr_mean_rot = tm_corr.mean_err()
        corr_rot_mean_trans, corr_rot_mean_rot = tm_corr_rot.mean_err()
        print("Odom. mean trans. error: {} | mean rot. error: {}".format(est_mean_trans, est_mean_rot*180/np.pi))
        print("Corr. mean trans. error: {} | mean rot. error: {}".format(corr_mean_trans, corr_mean_rot*180/np.pi))
        print("Corr. (rot. only) mean trans. error: {} | mean rot. error: {}".format(corr_rot_mean_trans, corr_rot_mean_rot*180/np.pi))
        
        seg_lengths = list(range(100,801,100))
        _, seg_errs_est = tm_est.segment_errors(seg_lengths, rot_unit='rad')
        _, seg_errs_corr = tm_corr.segment_errors(seg_lengths, rot_unit='rad')
        _, seg_errs_corr_rot = tm_corr_rot.segment_errors(seg_lengths, rot_unit='rad')
        print("Odom. mean Segment Errors: {} (trans, %) | {} (rot, deg/100m)".format(np.mean(seg_errs_est[:,1])*100, 100*np.mean(seg_errs_est[:,2])*180/np.pi))
        print("Corr. mean Segment Errors: {} (trans, %) | {} (rot, deg/100m)".format(np.mean(seg_errs_corr[:,1])*100, 100*np.mean(seg_errs_corr[:,2])*180/np.pi))
        print("Corr. (rot. only) mean Segment Errors: {} (trans, %) | {} (rot, deg/100m)".format(np.mean(seg_errs_corr_rot[:,1])*100, 100*np.mean(seg_errs_corr_rot[:,2])*180/np.pi)) 
        
    rot_seg_err = 100*np.mean(seg_errs_corr_rot[:,2])*180/np.pi

    return corrections_stacked, gt_corrections_stacked, full_corr_lie_alg_stacked, vo_lie_alg_stacked, gt_lie_alg_stacked, \
        np.array(corr_traj), np.array(corr_traj_rot), np.array(est_traj), np.array(gt_traj), rot_seg_err, corr_rot_mean_trans, np.array(cum_dist)