Example #1
0
    return line(sp, HG)


def line(sp, refX):
    sp = sp.copy()
    sp.xarr.units = 'angstroms'
    sp.xarr.refX = refX
    sp.xarr.refX_units = 'angstroms'
    sp.xarr.xtype = 'wavelength'
    sp.xarr.convert_to_unit('km/s')
    return sp


sp2 = pyspeckit.Spectrum('UT121009_DIS.txt',
                         skiplines=1,
                         xarrkwargs={
                             'xtype': 'wavelength',
                             'unit': 'angstroms'
                         })
sp2.units = 'erg s$^{-1}$ cm$^{-2}$ $\\AA^{-1}$'
sp2.specfit.register_fitter('mymodel', ModelClass, 18, multisingle='multi')
sp2.specfit.register_fitter('pcygni', PCygni, 22, multisingle='multi')
sp3 = pyspeckit.Spectrum('UT121002_DIS.txt',
                         skiplines=1,
                         xarrkwargs={
                             'xtype': 'wavelength',
                             'unit': 'angstroms'
                         })
sp3.units = 'erg s$^{-1}$ cm$^{-2}$ $\\AA^{-1}$'
sp3.specfit.register_fitter('mymodel', ModelClass, 18, multisingle='multi')
sp3.specfit.register_fitter('pcygni', PCygni, 22, multisingle='multi')
sp4 = pyspeckit.Spectrum('UT120830_DIS.txt',
Example #2
0
def fitnh3tkin(input_dict, dobaseline=True, baselinekwargs={}, crop=False, guessline='twotwo',
        tex=15,tkin=20,column=15.0,fortho=0.66, tau=None, thin=False, quiet=False, doplot=True, fignum=1,
        guessfignum=2, smooth=False, scale_keyword=None, rebase=False, npeaks=1, guesses=None,
        **kwargs): 
    """
    Given a dictionary of filenames and lines, fit them together
    e.g. {'oneone':'G000.000+00.000_nh3_11.fits'}
    """
    spdict = dict([ (linename,pyspeckit.Spectrum(value,
                                                 scale_keyword=scale_keyword))
                   if type(value) is str else (linename,value)
                   for linename, value in input_dict.iteritems() ])
    splist = spdict.values()

    for sp in splist: # required for plotting, cropping
        sp.xarr.convert_to_unit('km/s')

    if crop and len(crop) == 2:
        for sp in splist:
            sp.crop(*crop)

    if dobaseline:
        for sp in splist:
            sp.baseline(**baselinekwargs)

    if smooth and type(smooth) is int:
        for sp in splist:
            sp.smooth(smooth)

    spdict[guessline].specfit(fittype='gaussian', negamp=False, vheight=False,
                              guesses='moments')
    ampguess,vguess,widthguess = spdict[guessline].specfit.modelpars
    if widthguess < 0:
        raise ValueError("Width guess was < 0.  This is impossible.")
    print "RMS guess (errspec): ",spdict[guessline].specfit.errspec.mean()
    print "RMS guess (residuals): ",spdict[guessline].specfit.residuals.std()
    errguess = spdict[guessline].specfit.residuals.std()

    if rebase:
        # redo baseline subtraction excluding the centroid +/- about 20 km/s 
        vlow = spdict[guessline].specfit.modelpars[1]-(19.8+spdict[guessline].specfit.modelpars[2]*2.35)
        vhigh = spdict[guessline].specfit.modelpars[1]+(19.8+spdict[guessline].specfit.modelpars[2]*2.35)
        for sp in splist:
            sp.baseline(exclude=[vlow,vhigh], **baselinekwargs)
    
    for sp in splist:
        sp.error[:] = errguess

    spdict[guessline].plotter(figure=guessfignum)
    spdict[guessline].specfit.plot_fit()

    spectra = pyspeckit.Spectra(splist)
    spectra.specfit.npeaks = npeaks

    if tau is not None:
        if guesses is None:
            guesses = [a for i in xrange(npeaks) for a in
                       (tkin+random.random()*i, tex, tau+random.random()*i,
                        widthguess+random.random()*i, vguess+random.random()*i,
                        fortho)]
        spectra.specfit(fittype='ammonia_tau',quiet=quiet,multifit=None,guesses=guesses,
                        thin=thin, **kwargs)
    else:
        if guesses is None:
            guesses = [a for i in xrange(npeaks) for a in
                       (tkin+random.random()*i, tex, column+random.random()*i,
                        widthguess+random.random()*i, vguess+random.random()*i,
                        fortho)]
        spectra.specfit(fittype='ammonia',quiet=quiet,multifit=None,guesses=guesses,
                        thin=thin, **kwargs)

    if doplot:
        plot_nh3(spdict,spectra,fignum=fignum)

    return spdict,spectra
Example #3
0
c = 3E8
fnameT = './hist_figs/histogram_tkin.png'
# creates an empty array, to store tkin values into for histogram
htkin = []

for thisObject in objects:
    spect2 = {}
    if os.path.exists('./nh3/' + thisObject + '.n11.fits'):
        data1 = fits.getdata('./nh3/' + thisObject + '.n11.fits')
        A1 = np.arange(len(data1['DATA'].T))
        nu1 = data1['CDELT1'] * (A1 - data1['CRPIX1'] + 1) + data1['CRVAL1']
        v1 = c * (nu1 / data1['RESTFREQ'] - 1)
        spec11 = psk.Spectrum(data=(data1['DATA'].T).squeeze(),
                              xarr=v1,
                              xarrkwargs={
                                  'unit': 'm/s',
                                  'refX': data1['RESTFREQ'] / 1E6,
                                  'refX_units': 'MHz',
                                  'xtype': 'VLSR-RAD'
                              })
        spect2['oneone'] = spec11
    if os.path.exists('./nh3/' + thisObject + '.n22.fits'):
        data2 = fits.getdata('./nh3/' + thisObject + '.n22.fits')
        A2 = np.arange(len(data2['DATA'].T))
        nu2 = data2['CDELT1'] * (A2 - data2['CRPIX1'] + 1) + data2['CRVAL1']
        v2 = c * (nu2 / data2['RESTFREQ'] - 1)
        spec22 = psk.Spectrum(data=(data2['DATA'].T).squeeze(),
                              xarr=v2,
                              xarrkwargs={
                                  'unit': 'm/s',
                                  'refX': data2['RESTFREQ'] / 1E6,
                                  'refX_units': 'MHz',
flist = [fn] if 'fn' in locals() else glob.glob(
    paths.dpath('stacked_spectra/OrionSourceI_*robust0.5.fits'))
for fn in flist:

    basefn = os.path.split(fn)[-1]

    if 'B7' in basefn and 'lb' not in basefn:
        continue

    print(fn)

    beam = (radio_beam.Beam(0.1 * u.arcsec, 0.08 * u.arcsec) if 'B3' in fn else
            radio_beam.Beam(0.043 * u.arcsec, 0.034 * u.arcsec) if 'B6' in fn
            else radio_beam.Beam(0.029 * u.arcsec, 0.022 * u.arcsec))

    sp_st = pyspeckit.Spectrum(fn)

    jytok = beam.jtok(sp_st.xarr.mean())
    sp_st.data *= jytok.value
    sp_st.unit = u.K

    pl.figure(0, figsize=(16, 6)).clf()
    sp_st.plotter(figure=pl.figure(0, figsize=(16, 6)),
                  clear=True,
                  ymin=-0.0025 * jytok.value,
                  ymax=0.01 * jytok.value)

    for txt in sp_st.plotter.axis.texts:
        txt.set_backgroundcolor((1, 1, 1, 0.9))

    catmaps = {
Example #5
0
def measure_equivalent_width(filename, xmin, xmax, exclude_min, exclude_max,
                             n):
    sp = p.Spectrum(filename)
    sp.xarr.units = 'micron'
    sp.xarr.xtype = 'wavelength'

    sp.plotter(xmin=xmin, xmax=xmax, ymin=0, errstyle='bars', color='grey')
    sp.baseline(xmin=xmin,
                xmax=xmax,
                exclude=[exclude_min, exclude_max],
                subtract=False,
                highlight_fitregion=False,
                selectregion=True,
                order=0)
    sp.specfit(plot=True,
               fittype='voigt',
               color='blue',
               guesses='moments',
               vheight=True)
    sp.specfit.EQW(plot=True,
                   plotcolor='g',
                   fitted=False,
                   components=False,
                   annotate=True,
                   loc='lower left',
                   xmin=None,
                   xmax=None)

    sp2 = sp.copy()
    EQWs = []

    for w in range(n):
        sp2.data = sp.data + np.random.randn(sp.data.size) * sp.error
        sp2.baseline(xmin=xmin,
                     xmax=xmax,
                     exclude=[exclude_min, exclude_max],
                     subtract=False,
                     highlight_fitregion=False,
                     selectregion=True,
                     order=0)
        sp2.specfit(fittype='voigt', guesses=sp.specfit.parinfo.values)
        dist = sp2.specfit.EQW(plotcolor='g',
                               fitted=False,
                               components=False,
                               annotate=True,
                               loc='lower left',
                               xmin=None,
                               xmax=None)

        EQWs.append(dist)
    EQWs = np.array(EQWs)
    EQWs = EQWs * 10000
    sp.specfit.EQW(plot=True,
                   plotcolor='g',
                   fitted=False,
                   components=False,
                   annotate=True,
                   loc='lower left',
                   xmin=None,
                   xmax=None)

    sp2 = sp.copy()
    EQWs = np.zeros(n)

    for w in range(n):
        sp2.data = sp.data + np.random.randn(sp.data.size) * sp.error
        sp2.baseline(xmin=xmin,
                     xmax=xmax,
                     exclude=[exclude_min, exclude_max],
                     subtract=False,
                     highlight_fitregion=False,
                     selectregion=True,
                     order=0)
        sp2.specfit(fittype='voigt', guesses=sp.specfit.parinfo.values)
        dist = sp2.specfit.EQW(plotcolor='g',
                               fitted=False,
                               components=False,
                               annotate=True,
                               loc='lower left',
                               xmin=None,
                               xmax=None)

        # Convert from microns to angstroms
        EQWs[w] = dist * 10000.0

    plt.figure()
    mu, sigma = norm.fit(EQWs)
    print(mu, sigma)

    n, bins, patches = plt.hist(EQWs,
                                10,
                                normed=True,
                                facecolor='green',
                                histtype='stepfilled')
    y = mlab.normpdf(bins, mu, sigma)
    plt.plot(bins, y, 'r--', linewidth=2)
    plt.grid(True)
    plt.ylabel('Probability')
    plt.xlabel('EQW')
    plt.show()
    num_bins = np.floor(np.log10(n)) * 10

    # Light blue histogram for contrast and for R/G colorblind folks
    n, bins, patches = plt.hist(EQWs,
                                num_bins,
                                normed=True,
                                facecolor='lightblue',
                                histtype='stepfilled')
    y = mlab.normpdf(bins, mu, sigma)
    plt.plot(bins, y, 'r--', linewidth=2)

    # Plot the median and 68th percentile values for comparison
    perc = np.percentile(EQWs, [16, 50, 84])
    ax = plt.gca()
    for p_value in perc:
        ax.axvline(p_value, linestyle=":", color="k", lw=1.5)

    plt.ylabel('Probability')
    plt.xlabel('EQW')
    plt.show()
Example #6
0
import pyspeckit
import pylab as pl

# Load the spectrum & properly identify the units
# The data is from http://adsabs.harvard.edu/abs/1999A%26A...348..600P
sp = pyspeckit.Spectrum('02232+6138.txt')
sp.xarr.units = 'km/s'
sp.xarr.refX = 88.63184666e9
sp.xarr.xtype = 'velocity'
sp.units = '$T_A^*$'

# set the error array based on a signal-free part of the spectrum
sp.error[:] = sp.stats((-35, -25))['std']

# Register the fitter
# The HCN fitter is 'built-in' but is not registered by default; this example
# shows how to register a fitting procedure
# 'multi' indicates that it is possible to fit multiple components and a
# background will not automatically be fit
# 5 is the number of parameters in the model (line center,
# line width, and amplitude for the 0-1, 2-1, and 1-1 lines)
sp.Registry.add_fitter('hcn_varyhf',
                       pyspeckit.models.hcn.hcn_varyhf_amp_fitter,
                       5,
                       multisingle='multi')

# This one is the same, but with fixed relative ampltidue hyperfine components
sp.Registry.add_fitter('hcn_fixedhf',
                       pyspeckit.models.hcn.hcn_amp,
                       3,
                       multisingle='multi')
import latex_info

dv = 15 * u.km / u.s
v = 5.5 * u.km / u.s
dv_linesearch = 2.5 * u.km / u.s

fits = {}

bad_fits = [
    'Unknown_8',  # only half the line is detected
]

for spw in (0, 1, 2, 3):
    sp = pyspeckit.Spectrum(
        paths.dpath(
            'stacked_spectra/OrionSourceI_B6_spw{0}.fits'.format(spw)), )

    for linename, freq in lines.disk_lines.items():

        xmin = freq * (1 + (v - dv) / constants.c)
        xmax = freq * (1 + (v + dv) / constants.c)

        slc = sp.slice(xmin, xmax)
        if len(slc) == 0:
            continue

        guesses = [
            slc.data.max(), (freq * (1 + v / constants.c)).to(u.GHz).value,
            (2 * u.km / u.s / constants.c * freq).to(u.GHz).value
        ]
Example #8
0
import pyspeckit

if not 'interactive' in globals():
    interactive = False
if not 'savedir' in globals():
    savedir = ''

# load a FITS-compliant spectrum
spec = pyspeckit.Spectrum('10074-190_HCOp.fits')
# The units are originally frequency (check this by printing spec.xarr.units).
# I want to know the velocity.  Convert!
# Note that this only works because the reference frequency is set in the header
# this is no longer necessary!  #spec.xarr.frequency_to_velocity()
# Default conversion is to m/s, but we traditionally work in km/s
spec.xarr.convert_to_unit('km/s')
# plot it up!
spec.plotter()

# compute statistics
stats = spec.stats()

# set the errors
spec.error[:] = stats['std']

# Subtract a baseline (the data is only 'mostly' reduced)
spec.baseline()
# Fit a gaussian.  We know it will be an emission line, so we force a positive guess
# nsigcut_moments tells the moment analysis tool to only use high-significance
# data points to estimate the width of the line (it's tricky)
spec.specfit(negamp=False, nsigcut_moments=2)
# Note that the errors on the fits are larger than the fitted parameters.
Example #9
0
SIIb = 6732.68

# Offsets between SII lines in each complex
SIIb_off = SIIb - SIIa
OIIIb_off = OIIIb - OIIIa
NIIa_off_Ha = NIIa - Halpha
NIIb_off_Ha = NIIb - Halpha
SIIa_off_Ha = SIIa - Halpha
SIIb_off_Ha = SIIb - Halpha

# Guesses
narrow = 5.
broad = 30.

# Initialize spectrum object
spec = pyspeckit.Spectrum('sample_sdss.txt')
spec.unit = 'erg s^{-1} cm^{-2} \\AA^{-1}'
spec.xarr.set_unit = u.dimensionless_unscaled

# H-alpha
spec.specfit.selectregion(xmin=Halpha - 5, xmax=Halpha + 5)
ampHa = np.max(spec.data[spec.specfit.xmin:spec.specfit.xmax])

# SII
spec.specfit.selectregion(xmin=SIIa - 20, xmax=SIIb + 20)
smallamp = np.max(spec.data[spec.specfit.xmin:spec.specfit.xmax])

spec.specfit(guesses=[smallamp, SIIa, narrow, smallamp, SIIb, narrow],
             tied=['', '', 'p[-1]', '', 'p[1] + {0}'.format(SIIb_off), ''],
             negamp=False,
             quiet=True,
                           refX=freq_dict['twotwo']).as_unit(u.GHz)
xarr33 = SpectroscopicAxis(np.linspace(-50, 50, 100) * u.km / u.s,
                           velocity_convention='radio',
                           refX=freq_dict['threethree']).as_unit(u.GHz)
# Merge the three X-axes into a single axis
xarr = SpectroscopicAxes([xarr11, xarr22, xarr33])

# Compute a synthetic model that is made of two temperature components with
# identical velocities
synthspec = (
    ammonia.ammonia(xarr, tkin=20, ntot=15, fortho=0.5, xoff_v=0.0,
                    width=1.0) +
    ammonia.ammonia(xarr, tkin=50, ntot=14, fortho=0.5, xoff_v=0.0, width=1.0))

# Create the Spectrum object
spectrum = pyspeckit.Spectrum(xarr=xarr, data=synthspec)

# Step 2.  You have a spectrum.
# plot it
spectrum.plotter()

# Use the multi-tex/multi-tau model generator to build up a model function
# You can use any set of oneone, twotwo, ..., eighteight (no 9-9 or higher)
# This sets the number of parameters to be fit: 2+2*(n_transitions)
fitter = ammonia_hf.nh3_vtau_multimodel_generator(
    ['oneone', 'twotwo', 'threethree'])

# Register the fitter - i.e., tell pyspeckit where it is and how to use it
spectrum.specfit.Registry.add_fitter('nh3_vtau_123', fitter, fitter.npars)
# These are the parameter names, approximately:
# parnames=['center','width','Tex11','tau11','Tex22','tau22','Tex33','tau33'],
Example #11
0
import pyspeckit

# Load the spectrum
sp = pyspeckit.Spectrum('n2hp_opha_example.fits')

# Register the fitter
# The N2H+ fitter is 'built-in' but is not registered by default; this example
# shows how to register a fitting procedure
# 'multi' indicates that it is possible to fit multiple components and a
# background will not automatically be fit 4 is the number of parameters in the
# model (excitation temperature, optical depth, line center, and line width)
sp.Registry.add_fitter('n2hp_vtau', pyspeckit.models.n2hp.n2hp_vtau_fitter, 4)
sp.xarr.velocity_convention = 'radio'
# Run the fitter
sp.specfit(fittype='n2hp_vtau', multifit=None, guesses=[15, 2, 4, 0.2])

# Plot the results
sp.plotter()
# Re-run the fitter (to get proper error bars) and show the individual fit components
sp.specfit(fittype='n2hp_vtau',
           multifit=None,
           guesses=[15, 2, 4, 0.2],
           show_hyperfine_components=True)

# Save the figure (this step is just so that an image can be included on the web page)
sp.plotter.savefig('n2hp_ophA_fit.png')
Example #12
0
def splat_1d(filename=None,
             vmin=None,
             vmax=None,
             button=None,
             dobaseline=False,
             exclude=None,
             smooth=None,
             order=1,
             savepre=None,
             vcrop=True,
             vconv=None,
             vpars=None,
             spec=None,
             xtora=None,
             ytodec=None,
             specname=None,
             quiet=True,
             specnum=0,
             errspecnum=None,
             wcstype='',
             offset=0.0,
             continuum=0.0,
             annotatebaseline=False,
             plotspectrum=True,
             smoothto=None,
             xunits=None,
             units=None,
             conversion_factor=None,
             smoothtype='gaussian',
             convmode='same',
             maskspecnum=None,
             fignum=1,
             axis=None,
             autorefresh=False,
             title=None,
             color=None,
             label=None,
             clear=False,
             negamp=None,
             plotscale=1.0,
             voff=0.0,
             **kwargs):

    sp = pyspeckit.Spectrum(filename,
                            specnum=specnum,
                            errspecnum=errspecnum,
                            wcstype=wcstype,
                            **kwargs)
    sp.plotter.xmin = vmin
    sp.plotter.xmax = vmax
    sp.plotter.offset = offset
    if type(continuum) is str:
        sp.plotter.offset += sp.header.get(continuum)
    else:
        sp.plotter.offset += continuum
    if vcrop and vmin and vmax:
        sp.crop(vmin, vmax)

    if button != None:
        print "button keyword doesn't do anything"
    if maskspecnum:
        print "maskspecnum doesn't do anything [not implemented]"

    if specname:
        sp.plotter.title = specname
    if title:
        sp.plotter.title = title

    if smoothto:
        smooth = abs(smoothto / sp.xarr.cdelt())
    if smooth:
        sp.smooth(smooth, smoothtype=smoothtype, convmode=convmode)

    if xunits:
        sp.xarr.convert_to_unit(xunits)
    if units:
        sp.units = units

    if dobaseline:
        sp.baseline(order=order, exclude=exclude, annotate=annotatebaseline)

    if plotspectrum:
        if color is None:
            sp.plotter(figure=fignum,
                       axis=axis,
                       autorefresh=autorefresh,
                       clear=clear,
                       silent=quiet,
                       reset_ylimits=True,
                       title=title,
                       plotscale=plotscale,
                       xoffset=voff,
                       label=label)
        else:
            sp.plotter(figure=fignum,
                       axis=axis,
                       autorefresh=autorefresh,
                       color=color,
                       clear=clear,
                       silent=quiet,
                       reset_ylimits=True,
                       title=title,
                       plotscale=plotscale,
                       xoffset=voff,
                       label=label)

    if savepre is not None:
        glon, glat = sp.header.get("GLON"), sp.header.get("GLAT")
        if glon is None or glat is None:
            raise ValueError(
                "Header doesn't contain glon/glat.  Default savepre will not work."
            )
        if glat < 0: pm = ""
        else: pm = "+"
        savename = savepre + "G%07.3f%0s%07.3f_" % (
            glon, pm, glat) + sp.header.get('MOLECULE').replace(
                ' ', '') + sp.header.get('TRANSITI').replace(' ', '')
        sp.plotter.savefig(savename + '.png')

    sp.fitspec = sp.specfit
    sp.spectrum = sp.data
    sp.axis = sp.plotter.axis
    sp.dv = sp.xarr.cdelt()
    sp.vind = sp.xarr
    sp.cube = sp.data
    sp.save = sp.write

    return sp
Example #13
0
import pyspeckit
from DISfunctions import *

tsp1 = pyspeckit.Spectrum('UT120831_TSpec.final.txt', skiplines=1)
tsp1.specname = "UT120831"
tsp1.xarr.units = 'angstroms'
tsp1.xarr.xtype = 'wavelength'
tsp1 = tsp1 * 10
tsp1.units = '$10^{-15}$ erg s$^{-1}$ cm$^{-2}$ $\\AA^{-1}$'
tsp1.data.mask[tsp1.data > 0.1] = 0
tsp1.data.mask[(tsp1.xarr > 11100) * (tsp1.xarr < 11300)] = True
tsp2 = pyspeckit.Spectrum('UT121002_TSpec.final.txt', skiplines=1)
tsp2.specname = "UT121002"
tsp2.xarr.units = 'angstroms'
tsp2.xarr.xtype = 'wavelength'
tsp2.data.mask = tsp2.data < 0
tsp2.units = '$10^{-14}$ erg s$^{-1}$ cm$^{-2}$ $\\AA^{-1}$'
tsp2.data.mask[(tsp2.xarr > 11100) * (tsp2.xarr < 11300)] = True

for sp in [tsp1, tsp2]:
    print sp.specname
    sp.plotter(xmin=12400, xmax=13300)
    sp.baseline(xmin=12400,
                xmax=13300,
                exclude=[12770, 12866],
                powerlaw=True,
                subtract=False,
                reset_selection=True)
    yoffset = sp.baseline.basespec[sp.xarr.x_to_pix(12821)] - 0.05
    sp.plotter(xmin=12400, xmax=13300, ymin=yoffset - 0.05)
    sp.baseline.highlight_fitregion()
Example #14
0
SIIb = 6732.68

# Offsets between SII lines in each complex
SIIb_off = SIIb - SIIa
OIIIb_off = OIIIb - OIIIa
NIIa_off_Ha = NIIa - Halpha
NIIb_off_Ha = NIIb - Halpha
SIIa_off_Ha = SIIa - Halpha 
SIIb_off_Ha = SIIb - Halpha 

# Guesses
narrow = 5.
broad = 30.

# Initialize spectrum object
spec = pyspeckit.Spectrum('../tests/sample_sdss.txt')
spec.units = 'erg s^{-1} cm^{-2} \\AA^{-1}'
spec.xarr.units='angstroms'

# H-alpha
spec.specfit.selectregion(xmin = Halpha - 5, xmax = Halpha + 5)
ampHa = np.max(spec.data[spec.specfit.xmin:spec.specfit.xmax])

# SII
spec.specfit.selectregion(xmin = SIIa - 20, xmax = SIIb + 20)
smallamp = np.max(spec.data[spec.specfit.xmin:spec.specfit.xmax])    

spec.specfit(guesses = [smallamp, SIIa, narrow, smallamp, SIIb, narrow],
        tied=['', '', 'p[-1]', '', 'p[1] + {0}'.format(SIIb_off), ''],
        negamp=False, quiet=True, multifit=True, show_components=True)
    
import pyspeckit

# Grab a .fits spectrum with a legitimate header
sp = pyspeckit.Spectrum('G031.947+00.076_nh3_11_Tastar.fits')
""" HEADER:
SIMPLE  =                    T / Written by IDL:  Tue Aug 31 18:17:01 2010
BITPIX  = -64
NAXIS   =                    1 / number of array dimensions
NAXIS1  =                 8192 /Number of positions along axis 1
CDELT1  =  -0.077230503
CRPIX1  =  4096.0000
CRVAL1  =  68.365635
CTYPE1  =  'VRAD'
CUNIT1  =  'km/s    '
SPECSYS =  'LSRK'
RESTFRQ =  2.3694500e+10
VELOSYS =  -43755.930
CDELT1F =  6103.5156
CRPIX1F =  4096.0000
CRVAL1F =  2.3692555e+10
CTYPE1F =  'FREQ'
CUNIT1F =  'Hz'
SPECSYSF=  'LSRK'
RESTFRQF=  2.3694500e+10
VELOSYSF=  -43755.930
VDEF    =  'RADI-LSR'
SRCVEL  =  70.000000
ZSOURCE  =  0.00023349487
BUNIT   = 'K       '
OBJECT  =  'G031.947+00.076'
TELESCOP=  'GBT'
Example #16
0
from __future__ import print_function
import pyspeckit

if not 'interactive' in globals():
    interactive=False
if not 'savedir' in globals():
    savedir = ''

filenames = {'oneone':'G032.751-00.071_nh3_11_Tastar.fits',
    'twotwo':'G032.751-00.071_nh3_22_Tastar.fits',
    'threethree':'G032.751-00.071_nh3_33_Tastar.fits',}

sp1 = pyspeckit.Spectrum('G032.751-00.071_nh3_11_Tastar.fits')
sp1.crop(0,80)
sp1.smooth(4)
sp1.plotter()
sp1.baseline(exclude=[15,62])
sp1.plotter()
sp1.plotter.savefig(savedir+'nh3_11_baselined.png')
sp2 = pyspeckit.Spectrum('G032.751-00.071_nh3_22_Tastar.fits')
sp2.crop(0,80)
sp2.smooth(4)
sp2.plotter()
guesses = sp2.specfit.moments(fittype='gaussian')[1:]
sp2.specfit(fittype='gaussian', guesses=guesses)
sp2.baseline(exclude=[34,42])
sp2.plotter()
sp2.plotter.savefig(savedir+'nh3_22_baselined.png')
sp3 = pyspeckit.Spectrum('G032.751-00.071_nh3_33_Tastar.fits')
sp3.crop(0,80)
sp3.smooth(4)
import numpy as np
import pylab as pl
import pyspeckit
import glob
from astropy import log

fig = pl.figure(figsize=(12, 16))

for fn in glob.glob("*_full_SgrB2_TETC7m_r0_spw0_lines.fits"):

    for spw in (0, 1, 2, 3):
        fn_ = fn.replace("spw0", "spw{0}".format(spw))

        ax = pl.subplot(4, 1, spw + 1)

        sp = pyspeckit.Spectrum(fn_)
        sp.xarr.convert_to_unit('GHz')
        if not any(np.isfinite(sp.data)):
            log.warn("{0} is bad".format(fn_))
        else:
            log.info("{0} is good".format(fn_))
            sp.plotter(figure=fig, axis=ax, clear=True)

        if spw != 0:
            ax.set_title("")
        if spw == 3:
            sp.plotter.savefig('quicklooks/{0}.png'.format(
                fn.replace("_spw0", "")[:-5]))
Example #18
0
                fake_spec = ammonia.ammonia(xarr, tkin=tk, tex=tx, ntot=nt, width=sig, xoff_v=0,
                        fortho=0.5)
                real_tau = ammonia.ammonia(xarr, tkin=tk, tex=tx, ntot=nt, width=sig, xoff_v=0,
                        fortho=0.5, return_tau=True)

                if fake_spec.max()*3 < noise:
                    noises.append(fake_spec.max()/3.)
                    fake_spec += np.random.randn(fake_spec.size) * fake_spec.max()/3.
                    signoise.append(3)
                else:
                    noises.append(noise)
                    signoise.append(fake_spec.max()/noise)
                    fake_spec += np.random.randn(fake_spec.size) * noise

                sp = pyspeckit.Spectrum(xarr=xarr, data=fake_spec, err=err,units='K', header=pyfits.Header({'BUNIT':'K'}))
                
                # sp.plotter()

                sp.specfit(fittype='ammonia', multifit=True, guesses=[tk,tx,nt,sig,0,0.5],
                        fixed=[F,F,F,F,F,T], 
                        limitedmax=[T,T,T,T,T,T],
                        maxpars=[100,100,25,5,20,1],
                        limitedmin=[T,T,T,T,T,T],
                        minpars=[2.73,2.73,10,0,-20,0],
                        use_lmfit=True,
                        verbose=False)

                outs.append(sp.specfit.parinfo.values[:4])
                errors.append(sp.specfit.parinfo.errors[:4])
                print(" ".join(["%7s" % round(x,1) for x in ins[-1]]),"|",)
Example #19
0
                           refX=freq_dict['twotwo']).as_unit(u.GHz)
xarr33 = SpectroscopicAxis(np.linspace(-50, 50, 100) * u.km / u.s,
                           velocity_convention='radio',
                           refX=freq_dict['threethree']).as_unit(u.GHz)
# Merge the three X-axes into a single axis
xarr = SpectroscopicAxes([xarr11, xarr22, xarr33])

# Compute a synthetic model that is made of two temperature components with
# identical velocities
synthspec = (
    ammonia.ammonia(xarr, trot=20, ntot=15, fortho=0.5, xoff_v=0.0,
                    width=1.0) +
    ammonia.ammonia(xarr, trot=50, ntot=14, fortho=0.5, xoff_v=0.0, width=1.0))

# Create the Spectrum object
spectrum = pyspeckit.Spectrum(xarr=xarr, data=synthspec, header={})

# Step 2.  You have a spectrum.
# plot it
spectrum.plotter()

# Use the multi-tex/multi-tau model generator to build up a model function
# You can use any set of oneone, twotwo, ..., eighteight (no 9-9 or higher)
# This sets the number of parameters to be fit: 2+2*(n_transitions)
fitter = ammonia_hf.nh3_vtau_multimodel_generator(
    ['oneone', 'twotwo', 'threethree'])

# Register the fitter - i.e., tell pyspeckit where it is and how to use it
spectrum.specfit.Registry.add_fitter('nh3_vtau_123', fitter, fitter.npars)
# These are the parameter names, approximately:
# parnames=['center','width','Tex11','tau11','Tex22','tau22','Tex33','tau33'],
import pyspeckit
import os
from pyspeckit.spectrum.models import nh2d
import numpy as np

import astropy.units as u

if not os.path.exists('p-nh2d_spec.fits'):
    import astropy.utils.data as aud
    from astropy.io import fits
    f = aud.download_file('https://github.com/pyspeckit/pyspeckit-example-files/raw/master/p-nh2d_spec.fits')
    with fits.open(f) as ff:
        ff.writeto('p-nh2d_spec.fits')

# Load the spectrum 
spec = pyspeckit.Spectrum('p-nh2d_spec.fits')
# Determine rms from line free section and load into cube
rms = np.std(spec.data[10:340])
spec.error[:] = rms
# setup spectral axis
spec.xarr.refX = 110.153594*u.GHz
spec.xarr.velocity_convention = 'radio'
spec.xarr.convert_to_unit('km/s')
# define useful shortcuts for True and False
F=False
T=True
# Setup of matplotlib
import matplotlib.pyplot as plt
plt.ion()
# Add NH2D fitter
spec.Registry.add_fitter('nh2d_vtau', pyspeckit.models.nh2d.nh2d_vtau_fitter,4)
Example #21
0
                                             unit=str(cube.spectral_axis.unit),
                                             refX=cube.wcs.wcs.restfrq,
                                             refX_units='Hz')

    spectra = {}
    for region_number,reg in enumerate(regs):
        name = reg.attr[1]['text']
        if name not in spectra:
            #sp = cube.get_apspec(reg.coord_list,coordsys='galactic',wunit='degree')
            shape = pyregion.ShapeList([reg])
            #mask = shape.get_mask(header=noisehdr, shape=noise.shape)
            scube = cube.subcube_from_ds9region(shape)
            data = scube.apply_numpy_function(np.nanmean, axis=(1,2))
            #error = ((noise[mask & noiseokmask]**2).sum()**0.5/np.count_nonzero(mask))
            sp = pyspeckit.Spectrum(data=data,
                                    error=np.ones(data.size),#*error,
                                    xarr=xarr, header=cube.wcs.to_header())
            sp.xarr.convert_to_unit('GHz')
            #sp.header['ERROR'] = error
            #sp.error[:] = sp.stats((218.5e9,218.65e9))['std']
            sp.specname = reg.attr[1]['text']
            # Error is already computed above; this is an old hack
            #sp.error[:] = sp.stats((218e9,218.1e9))['std']
            spectra[name] = sp
            sp.unit = "$T_{A}$ [K]"
        else:
            sp = spectra[name]

        sp.plotter.figure = pl.figure(1)
        sp.plotter()
        #linesel = (lfreq > sp.xarr.as_unit('GHz').min()) & (lfreq < sp.xarr.as_unit('GHz').max())
import pyspeckit

# Rest wavelengths of the lines we are fitting - use as initial guesses
NIIa = 6549.86
NIIb = 6585.27
Halpha = 6564.614
SIIa = 6718.29
SIIb = 6732.68

# Initialize spectrum object and plot region surrounding Halpha-[NII] complex
spec = pyspeckit.Spectrum('sample_sdss.txt', errorcol=2)
spec.plotter(xmin=6450, xmax=6775, ymin=0, ymax=150)

# We fit the [NII] and [SII] doublets, and allow two components for Halpha.
# The widths of all narrow lines are tied to the widths of [SII].
guesses = [
    50, NIIa, 5, 100, Halpha, 5, 50, Halpha, 50, 50, NIIb, 5, 20, SIIa, 5, 20,
    SIIb, 5
]
tied = [
    '', '', 'p[17]', '', '', 'p[17]', '', 'p[4]', '', '3 * p[0]', '', 'p[17]',
    '', '', 'p[17]', '', '', ''
]

# Actually do the fit.
spec.specfit(guesses=guesses, tied=tied, annotate=False)
spec.plotter.refresh()

# Let's use the measurements class to derive information about the emission
# lines.  The galaxy's redshift and the flux normalization of the spectrum
# must be supplied to convert measured fluxes to line luminosities.  If the
Example #23
0
import pyspeckit
import pylab as pl
import astropy.units as u

# Load the spectrum & properly identify the units
# The data is from http://adsabs.harvard.edu/abs/1999A%26A...348..600P
sp = pyspeckit.Spectrum('02232_plus_6138.txt')
sp.xarr.set_unit(u.km / u.s)
sp.xarr.refX = 88.63184666e9 * u.Hz
sp.xarr.velocity_convention = 'radio'
sp.xarr.xtype = 'velocity'
sp.unit = '$T_A^*$'

# set the error array based on a signal-free part of the spectrum
sp.error[:] = sp.stats((-35, -25))['std']
# Register the fitter
# The HCN fitter is 'built-in' but is not registered by default; this example
# shows how to register a fitting procedure
# 'multi' indicates that it is possible to fit multiple components and a
# background will not automatically be fit
# 5 is the number of parameters in the model (line center,
# line width, and amplitude for the 0-1, 2-1, and 1-1 lines)
sp.Registry.add_fitter('hcn_varyhf',
                       pyspeckit.models.hcn.hcn_varyhf_amp_fitter, 5)

# This one is the same, but with fixed relative ampltidue hyperfine components
sp.Registry.add_fitter('hcn_fixedhf', pyspeckit.models.hcn.hcn_amp, 3)

# Plot the results
sp.plotter()
# Run the fixed-ampltiude fitter and show the individual fit components
Example #24
0
def line_ids(fn):
    results = []
    Ulines = []

    sp = pyspeckit.Spectrum(fn)

    # this is a bit hackier than I like
    # we'll do all our measurements in Kelvin!
    beams = Beams.from_fits_bintable(fits.open(fn)[1])
    factors = jtok_factors(beams, sp.xarr.to(u.GHz))
    sp.data = sp.data * factors
    sp.unit = u.K

    # want km/s - reference will be ~middle of SPW
    sp.xarr.convert_to_unit(u.km / u.s)

    med = np.nanmedian(sp.data)

    mad = stats.mad_std(sp.data - med)
    detections = (sp.data - med) > 5 * mad

    labels, ct = label(detections)

    for labelid in range(1, ct + 1):
        ssp = sp[labels == labelid]
        try:
            ssp.xarr.convert_to_unit(u.GHz)
            ssp.specfit()
            ssp.specfit.parinfo
            frq = ssp.specfit.parinfo['SHIFT0'].value * ssp.xarr.unit
        except Exception as ex:
            print(ex)
            frq = ssp.xarr.to(u.GHz).mean()
        sq = Splatalogue.query_lines(
            frq * (1 + 0 / 3e5),
            frq * (1 + 75 / 3e5),  # 30/3e5 original lower bound
            only_astronomically_observed=True)
        if len(sq) > 0:
            tbl = utils.minimize_table(sq)
            try:
                total_intensity = ssp.data.sum() * np.abs(
                    ssp.xarr.to(u.km / u.s).cdelt())
            except ValueError:
                total_intensity = ssp.data.sum() * np.abs(
                    sp.xarr.to(u.km / u.s).cdelt())
            peak_intensity = ssp.data.max()
            tbl.add_column(Column(data=total_intensity, name='TotalIntensity'))
            tbl.add_column(Column(data=peak_intensity, name='PeakIntensity'))
            tbl.add_column(Column(data=mad, name='RMS'))
            tbl.add_column(
                Column(data=u.Quantity((-(frq.to(u.GHz).value - tbl['Freq']) /
                                        tbl['Freq'] * constants.c),
                                       u.km / u.s),
                       name='Velocity'))
            #             print(tbl.pprint(max_width=200))
            results.append(tbl)
        else:
            log.warning(f"Frequency {frq.to(u.GHz)} had no hits")
            Ulines.append(frq)

    try:
        match_table = table.vstack(results)
    except ValueError:
        pass
    else:
        #         match_table.remove_column('QNs')
        match_table = table.unique(match_table, keys='Species')
    match_table.sort('Freq')
    print(match_table.pprint(max_width=200))
    print(match_table['Species', 'Freq', 'Velocity'])
    #     match_table.write(f"line_fit_table_{suffix}.ipac", format='ascii.ipac', overwrite=True)
    return match_table
Example #25
0
def measure_equivalent_width(filename, xmin, xmax, exclude_min, exclude_max,
                             n):
    """
    Calculate the equivalent width of an absorption or emission line for a given spectrum using PySpecKit. By: Munazza Alam

    =======
    Args:
    =======
    xmin,xmax - the specified interval of the spectrum to plot
    excludemin, excludemax - the specified interval (in wavelength space) of the absorption feature
    n - the number of Monte Carlo iterations

    =======
    Returns:
    =======
    - the mean and standard deviation of the equivalent width measured n times
    - the spectrum plotted with the Voigt profile line fit (blue), the pseudo-continuum (yellow),
      and the approximated rectangle (green)
    - a histogram of the EqW distribution
    """

    sp = p.Spectrum(filename)
    sp.xarr.units = 'micron'
    sp.xarr.xtype = 'wavelength'

    sp.plotter(xmin=xmin, xmax=xmax, ymin=0, errstyle='bars', color='grey')
    sp.baseline(xmin=xmin,
                xmax=xmax,
                exclude=[exclude_min, exclude_max],
                subtract=False,
                highlight_fitregion=False,
                selectregion=True,
                order=0)
    sp.specfit(plot=True,
               fittype='voigt',
               color='blue',
               guesses='moments',
               vheight=True)
    sp.specfit.EQW(plot=True,
                   plotcolor='g',
                   fitted=False,
                   components=False,
                   annotate=True,
                   loc='lower left',
                   xmin=None,
                   xmax=None)

    sp2 = sp.copy()
    EQWs = []

    for w in range(n):
        sp2.data = sp.data + np.random.randn(sp.data.size) * sp.error
        sp2.baseline(xmin=xmin,
                     xmax=xmax,
                     exclude=[exclude_min, exclude_max],
                     subtract=False,
                     highlight_fitregion=False,
                     selectregion=True,
                     order=0)
        sp2.specfit(fittype='voigt', guesses=sp.specfit.parinfo.values)
        dist = sp2.specfit.EQW(plotcolor='g',
                               fitted=False,
                               components=False,
                               annotate=True,
                               loc='lower left',
                               xmin=None,
                               xmax=None)

        EQWs.append(dist)
    EQWs = np.array(EQWs)
    EQWs = EQWs * 10000
    sp.specfit.EQW(plot=True,
                   plotcolor='g',
                   fitted=False,
                   components=False,
                   annotate=True,
                   loc='lower left',
                   xmin=None,
                   xmax=None)

    sp2 = sp.copy()
    EQWs = np.zeros(n)

    for w in range(n):
        sp2.data = sp.data + np.random.randn(sp.data.size) * sp.error
        sp2.baseline(xmin=xmin,
                     xmax=xmax,
                     exclude=[exclude_min, exclude_max],
                     subtract=False,
                     highlight_fitregion=False,
                     selectregion=True,
                     order=0)
        sp2.specfit(fittype='voigt', guesses=sp.specfit.parinfo.values)
        dist = sp2.specfit.EQW(plotcolor='g',
                               fitted=False,
                               components=False,
                               annotate=True,
                               loc='lower left',
                               xmin=None,
                               xmax=None)

        # Convert from microns to angstroms
        EQWs[w] = dist * 10000.0

    plt.figure()
    mu, sigma = norm.fit(EQWs)
    print mu, sigma

    n, bins, patches = plt.hist(EQWs,
                                10,
                                normed=True,
                                facecolor='green',
                                histtype='stepfilled')
    y = mlab.normpdf(bins, mu, sigma)
    plt.plot(bins, y, 'r--', linewidth=2)
    plt.grid(True)
    plt.ylabel('Probability')
    plt.xlabel('EQW')
    plt.show()
    num_bins = np.floor(np.log10(n)) * 10

    # Light blue histogram for contrast and for R/G colorblind folks
    n, bins, patches = plt.hist(EQWs,
                                num_bins,
                                normed=True,
                                facecolor='lightblue',
                                histtype='stepfilled')
    y = mlab.normpdf(bins, mu, sigma)
    plt.plot(bins, y, 'r--', linewidth=2)

    # Plot the median and 68th percentile values for comparison
    perc = np.percentile(EQWs, [16, 50, 84])
    ax = plt.gca()
    for p_value in perc:
        ax.axvline(p_value, linestyle=":", color="k", lw=1.5)

    plt.ylabel('Probability')
    plt.xlabel('EQW')
    plt.show()
Example #26
0
def fitrow(n):
    global guesses, sp
    Y = z[239 * n:239 * (n + 1)]
    X = x[239 * n:239 * (n + 1)]
    xarr = pyspeckit.spectrum.units.SpectroscopicAxis(X)
    yarr = pyspeckit.spectrum.units.SpectroscopicAxis(Y)
    sp = pyspeckit.Spectrum(xarr=xarr, data=yarr)
    sp.specfit.Registry.add_fitter('lorentzian',
                                   lorentzian_fitter(multisingle='multi'),
                                   3,
                                   multisingle='multi',
                                   key='L')
    ## sp.Registry.add_fitter ('lorentzian',lorentzian_fitter(multisingle='multi'),3,multisingle='multi',key='L')
    sp.plotter()
    ## sp.smooth(2)
    guesses, tied = findpks(Y, X, 1e5)
    if len(guesses) == 0:
        return [0., 1., 1.]
    minp, maxp, lmin, lmax = limitparams(1, 0.02)
    sp.specfit(fittype='gaussian',
               multifit=True,
               negamp=False,
               annotate=False,
               limitedmin=lmin,
               limitedmax=lmax,
               minpars=minp,
               maxpars=maxp,
               guesses=guesses,
               tied=tied,
               quiet=True)
    guesses = sp.specfit.modelpars
    fixed = fixparams([True, True, False])
    minp, maxp, lmin, lmax = limitparams(2, 3)
    ## minp, maxp, lmin, lmax = limitparams(2,0.05)
    sp.specfit(fittype='gaussian',
               multifit=True,
               negamp=False,
               annotate=False,
               limitedmin=lmin,
               limitedmax=lmax,
               minpars=minp,
               maxpars=maxp,
               guesses=guesses,
               fixed=fixed,
               quiet=True)
    guesses = sp.specfit.modelpars
    fixed = fixparams([False, True, True])
    sp.specfit(fittype='lorentzian',
               multifit=True,
               negamp=False,
               annotate=False,
               guesses=guesses,
               fixed=fixed,
               quiet=True)
    guesses = sp.specfit.modelpars
    fixed = fixparams([True, True, False])
    minp, maxp, lmin, lmax = limitparams(2, 0.2)
    sp.specfit(fittype='lorentzian',
               multifit=True,
               negamp=False,
               annotate=False,
               limitedmin=lmin,
               limitedmax=lmax,
               minpars=minp,
               maxpars=maxp,
               guesses=guesses,
               fixed=fixed,
               quiet=True)
    ## guesses=sp.specfit.modelpars
    ## sp.specfit(fittype='lorentzian',multifit=True,guesses=guesses,annotate=False)
    return sp.specfit.modelpars
Example #27
0
import pyspeckit
import numpy as np
from pyspeckit.spectrum.models import voigtfitter

# technically, the voigt fitter works as a singlefitter (i.e., you can fit the
# background level and the peak simultaneously) 
# in practice, however, you need to fit the background independently except for
# gaussians.  I don't know why this is.

xarr = pyspeckit.spectrum.units.SpectroscopicAxis(np.linspace(-100,100,500),unit='km/s',refX=1e9,refX_units='Hz')
VF = voigtfitter.voigt_fitter()

sp1 = pyspeckit.Spectrum(xarr=xarr, data=VF.voigt(xarr,1,0,2.5,2.5) + np.random.randn(xarr.shape[0])/20., error=np.ones(xarr.shape[0])/20.)
sp1.plotter()
sp1.specfit(fittype='gaussian',composite_fit_color='b',clear=False,annotate=False)
sp1.specfit(fittype='lorentzian',composite_fit_color='g',clear=False,annotate=False)
sp1.specfit(fittype='voigt',composite_fit_color='r',clear=False,annotate=True)
sp1.baseline.annotate()

sp2 = pyspeckit.Spectrum(xarr=xarr, data=VF.voigt(xarr,1,0,2.5,5.0) + np.random.randn(xarr.shape[0])/20., error=np.ones(xarr.shape[0])/20.)
sp2.plotter()
sp2.specfit(fittype='gaussian',composite_fit_color='b',clear=False,annotate=False)
sp2.specfit(fittype='lorentzian',composite_fit_color='g',clear=False,annotate=False)
sp2.specfit(fittype='voigt',composite_fit_color='r',clear=False,annotate=True)
sp2.baseline.annotate()

sp3 = pyspeckit.Spectrum(xarr=xarr, data=VF.voigt(xarr,1,0,2.5,5.0) + np.random.randn(xarr.shape[0])/50., error=np.ones(xarr.shape[0])/50.)
sp3.plotter()
sp3.specfit(fittype='gaussian',composite_fit_color='b',clear=False,annotate=False)
sp3.specfit(fittype='lorentzian',composite_fit_color='g',clear=False,annotate=False)
sp3.specfit(fittype='voigt',composite_fit_color='r',clear=False,annotate=True)
Example #28
0
from __future__ import print_function
"""
Try to identify a pseudocontinuum zone
"""
import pyspeckit
from astropy import units as u
import numpy as np
import scipy.ndimage
import pylab as pl

from astropy import log
#log.setLevel(10)

for spw in range(4):

    sp = pyspeckit.Spectrum('e8mm_spw{0}_mean.fits'.format(spw))
    sp.plotter(figure=pl.figure(1))
    sp.baseline.includemask &= (sp.data > 0.25) & (sp.data < 0.35)
    sp.baseline.highlight_fitregion()
    sp.baseline(order=1,
                subtract=False,
                reset=False,
                highlight_fitregion=False,
                reset_selection=False,
                selectregion=False)
    sp.baseline(order=1,
                subtract=True,
                reset=False,
                highlight_fitregion=False,
                reset_selection=False,
                selectregion=False)
                             trot=trot,
                             tex=tex,
                             width=sigma,
                             xoff_v=center,
                             ntot=ntot)

# Add noise
stddev = 0.1
noise = np.random.randn(xaxis.size) * stddev
error = stddev * np.ones_like(synth_data)
data = noise + synth_data

# this will give a "blank header" warning, which is fine
sp = pyspeckit.Spectrum(data=data,
                        error=error,
                        xarr=xaxis,
                        xarrkwargs={'unit': 'km/s'},
                        unit=u.K)

sp.plotter(figure=pl.figure(1), errstyle='fill')

# fit with some vague initial guesses and a fixed ortho/para
# fraction of 1 (it is unconstrained in our data)
sp.specfit(
    fittype='ammonia',
    #guesses=[20, 15, 15.5, 3, 2, 1],
    guesses=[30, 25, 15.5, 3, 2, 0],
    fixed=[False, False, False, False, False, True])

# do it again to set the errors neatly
sp.specfit(
Example #30
0
                         unit=u.GHz)

for fn in glob.glob("*merge.fits"):
    outf = 'avspec/avg_{0}'.format(fn)
    if not os.path.exists(outf):
        cube = SpectralCube.read(fn)
        cube.allow_huge_operations=True
        mad = cube.mad_std(axis=0)
        sum = (cube*mad).sum(axis=(1,2))
        mean = sum/np.nansum(mad)
        mean.write('avspec/weighted_avg_{0}'.format(fn), overwrite=True)
        mn = cube.mean(axis=(1,2))
        mn.write(outf, overwrite=True)

for fn in glob.glob("*merge.fits"):
    spw = pyspeckit.Spectrum('avspec/weighted_avg_{0}'.format(fn))
    sp = pyspeckit.Spectrum('avspec/avg_{0}'.format(fn))
    sp.plotter()
    #spw.plotter(axis=sp.plotter.axis, clear=False, color='b')
    sp.plotter.savefig('avspec/avg_{0}'.format(fn.replace(".fits",".png")))
    med = np.median(sp.data)
    sp.plotter.axis.set_ylim(med-0.1, med+0.2)
    sp.plotter.savefig('avspec/avg_yzoom_{0}'.format(fn.replace(".fits",".png")))


    plot_kwargs = {'color':'r', 'linestyle':'--'}
    annotate_kwargs = {'color': 'r'}
    sp.plotter.line_ids(species_names, u.Quantity(frequencies),
                        velocity_offset=velo, plot_kwargs=plot_kwargs,
                        annotate_kwargs=annotate_kwargs)