Example #1
0
def mms_pgs_mphigeo(mag_temp, pos_temp):
    """
    Generates the 'mphigeo' transformation matrix
    """
    pos_data = get_data(pos_temp)

    if pos_data is None:
        logging.error('Error with position data')
        return

    # the following is heisted from the IDL version
    # transformation to generate other_dim dim for mphigeo from thm_fac_matrix_make
    # All the conversions to polar and trig simplifies to this.
    # But the reason the conversion is why this is the conversion that is done, is lost on me.
    # The conversion swaps the x & y components of position, reflects over x=0,z=0 then projects into the xy plane
    pos_conv = np.stack(
        (-pos_data.y[:, 1], pos_data.y[:, 0], np.zeros(len(pos_data.times))))
    pos_conv = np.transpose(pos_conv, [1, 0])
    store_data(pos_temp, data={'x': pos_data.times, 'y': pos_conv})

    # transform into GSE because the particles are in GSE
    cotrans(name_in=pos_temp,
            name_out=pos_temp,
            coord_in='gei',
            coord_out='gse')

    # create orthonormal basis set
    z_basis = tnormalize(mag_temp, return_data=True)
    x_basis = tcrossp(z_basis, pos_temp, return_data=True)
    x_basis = tnormalize(x_basis, return_data=True)
    y_basis = tcrossp(z_basis, x_basis, return_data=True)

    return (x_basis, y_basis, z_basis)
Example #2
0
 def test_tnormalize(self):
     """ tests for normalizing tplot variables"""
     store_data('test_tnormalize',
                data={
                    'x': [1, 2, 3, 4, 5],
                    'y': [[3, 2, 1], [1, 2, 3], [10, 5, 1], [8, 10, 14],
                          [70, 20, 10]]
                })
     norm = tnormalize('test_tnormalize')
     normalized_data = get_data(norm)
     self.assertTrue(
         np.round(normalized_data.y[0, :], 4).tolist() ==
         [0.8018, 0.5345, 0.2673])
     self.assertTrue(
         np.round(normalized_data.y[1, :], 4).tolist() ==
         [0.2673, 0.5345, 0.8018])
     self.assertTrue(
         np.round(normalized_data.y[2, :], 4).tolist() ==
         [0.8909, 0.4454, 0.0891])
     self.assertTrue(
         np.round(normalized_data.y[3, :], 4).tolist() ==
         [0.4216, 0.527, 0.7379])
     self.assertTrue(
         np.round(normalized_data.y[4, :], 4).tolist() ==
         [0.9526, 0.2722, 0.1361])
Example #3
0
def xgse(mag_temp):
    """
    Generates the 'xgse' transformation matrix
    """
    mag_data = get_data(mag_temp)

    # xaxis of this system is X of the gse system. Z is mag field
    x_axis = np.zeros((len(mag_data.times), 3))
    x_axis[:, 0] = 1

    # create orthonormal basis set
    z_basis = tnormalize(mag_temp, return_data=True)
    y_basis = tcrossp(z_basis, x_axis, return_data=True)
    y_basis = tnormalize(y_basis, return_data=True)
    x_basis = tcrossp(y_basis, z_basis, return_data=True)

    return (x_basis, y_basis, z_basis)
Example #4
0
def cart_trans_matrix_make(x, y, z):

    ndim = x.ndim

    if ndim == 2:
        ex = tnormalize(x, return_data=True)
        ey = tnormalize(y, return_data=True)
        ez = tnormalize(z, return_data=True)
        mat_out = np.concatenate([ex, ey, ez], 1).reshape(x.shape[0], 3, 3)

    elif ndim == 1:
        ex = x/np.sqrt((x*x).sum())
        ey = y/np.sqrt((y*y).sum())
        ez = z/np.sqrt((z*z).sum())
        mat_out = np.array([ex, ey, ez]).T

    return mat_out
Example #5
0
def dsi2j2000(name_in=None,
              name_out=None,
              no_orb=False,
              J20002DSI=False,
              noload=False):
    """
    This function transform a time series data between the DSI and J2000 coordinate systems

    Parameters:

        name_in : str
            input tplot variable to be transformed

        name_out : str
            Name of the tplot variable in which the transformed data is stored

        J20002DSI : bool
            Set to transform data from J2000 to DSI. If not set, it transforms data from DSI to J2000.

    Returns:
        None

    """
    if (name_in is None) or (name_in not in tplot_names(quiet=True)):
        print('Input of Tplot name is undifiend')
        return

    if name_out is None:
        print('Tplot name for output is undifiend')
        name_out = 'result_of_dsi2j2000'

    # prepare for transformed Tplot Variable
    reload = not noload
    dl_in = get_data(name_in, metadata=True)
    get_data_array = get_data(name_in)
    time_array = get_data_array[0]
    time_length = time_array.shape[0]
    dat = get_data_array[1]

    # Get the SGI axis by interpolating the attitude data
    dsiz_j2000 = erg_interpolate_att(name_in, noload=noload)['sgiz_j2000']

    # Sun direction in J2000
    sundir = np.array([[1., 0., 0.]]*time_length)

    if no_orb:
        store_data('sundir_gse', data={'x': time_array, 'y': sundir})

    else:  # Calculate the sun directions from the instantaneous satellite locations
        if reload:
            tr = get_timespan(name_in)
            orb(trange=time_string([tr[0] - 60., tr[1] + 60.]))
            tinterpol('erg_orb_l2_pos_gse', time_array)
            scpos = get_data('erg_orb_l2_pos_gse-itrp')[1]
            sunpos = np.array([[1.496e+08, 0., 0.]]*time_length)
            sundir = sunpos - scpos
            store_data('sundir_gse', data={'x': time_array, 'y': sundir})
            tnormalize('sundir_gse', newname='sundir_gse')

    # Derive DSI-X and DSI-Y axis vectors in J2000.
    # The elementary vectors below are the definition of DSI. The detailed relationship
    # between the spin phase, sun pulse timing, sun direction, and the actual subsolar point
    # on the spining s/c body should be incorporated into the calculation below.
    if reload:
        cotrans(name_in='sundir_gse', name_out='sundir_j2000',
                coord_in='gse', coord_out='j2000')
    sun_j2000 = get_data('sundir_j2000')
    dsiy = tcrossp(dsiz_j2000['y'], sun_j2000[1], return_data=True)
    dsix = tcrossp(dsiy, dsiz_j2000['y'], return_data=True)
    dsix_j2000 = {'x': time_array, 'y': dsix}
    dsiy_j2000 = {'x': time_array, 'y': dsiy}

    if not J20002DSI:
        print('DSI --> J2000')
        mat = cart_trans_matrix_make(
            dsix_j2000['y'], dsiy_j2000['y'], dsiz_j2000['y'])
        j2000x_in_dsi = np.dot(mat, np.array([1., 0., 0.]))
        j2000y_in_dsi = np.dot(mat, np.array([0., 1., 0.]))
        j2000z_in_dsi = np.dot(mat, np.array([0., 0., 1.]))
        mat = cart_trans_matrix_make(
            j2000x_in_dsi, j2000y_in_dsi, j2000z_in_dsi)
        dat_new = np.einsum("ijk,ik->ij", mat, dat)
    else:
        print('J2000 --> DSI')
        mat = cart_trans_matrix_make(
            dsix_j2000['y'], dsiy_j2000['y'], dsiz_j2000['y'])
        dat_new = np.einsum("ijk,ik->ij", mat, dat)

    store_data(name_out, data={'x': time_array, 'y': dat_new}, attr_dict=dl_in)
    options(name_out, 'ytitle', '\n'.join(name_out.split('_')))