Example #1
0
    def eval(self, solver):
        
        if not ((solver.count % self.count) == 0):
            return

        particles = solver.particles
        time = solver.t

        nnps = particles.nnps_manager
        locator_cache = nnps.particle_locator_cache
        
        num_locs = len(locator_cache)
        locators = locator_cache.values()

        fname_base = os.path.join(self.path+"/neighbors_"+str(self.rank))

        cell_manager = particles.cell_manager
        cell_size = cell_manager.cell_size

        neighbor_idx = {}

        for i in range(num_locs):
            loc = locators[i]
            dest = loc.dest
            src = loc.source
            
            particle_indices = dest.get('idx')

            x, y, z = dest.get("x", "y", "z")

            neighbor_idx[dest.name + '-' + src.name] = {}
            d = neighbor_idx[dest.name + '-' + src.name]

            nrp = dest.num_real_particles

            for j in range(nrp):
                neighbors = loc.py_get_nearest_particles(j)
                
                temp = dest.extract_particles(neighbors)
                particle_idx = particle_indices[j]
                
                pnt = base.Point(x[j], y[j], z[j])
                cid = py_find_cell_id(pnt, cell_size)

                idx = temp.get_carray("idx")

                d[particle_idx] = {'neighbors':idx, 'cid':cid}
            
            fname = fname_base + "_" + dest.name + "_" + str(solver.count)

            # save particle neighbor information.
            f = open(fname, 'w')
            pickle.dump(neighbor_idx, f)
            f.close()
            
            fname_cells = os.path.join(self.path+"/cells_"+str(self.rank))
            fname_cells += "_" + str(solver.count)

            # ask the cell manager to save the particle representation
            cell_manager.get_particle_representation(fname_cells)
Example #2
0
    def eval(self, solver, count):

        if not ((count % self.count) == 0):
            return

        particles = solver.particles
        time = solver.t

        nnps = particles.nnps_manager
        locator_cache = nnps.particle_locator_cache

        num_locs = len(locator_cache)
        locators = locator_cache.values()

        fname_base = os.path.join(self.path + "/neighbors_" + str(self.rank))

        cell_manager = particles.cell_manager
        cell_size = cell_manager.cell_size

        for i in range(num_locs):
            loc = locators[i]
            dest = loc.dest

            particle_indices = dest.get('idx')

            x, y, z = dest.get("x", "y", "z")

            neighbor_idx = {}

            nrp = dest.num_real_particles

            for j in range(nrp):
                neighbors = loc.py_get_nearest_particles(j)

                temp = dest.extract_particles(neighbors)
                particle_idx = particle_indices[j]

                pnt = base.Point(x[j], y[j], z[j])
                cid = py_find_cell_id(pnt, cell_size)

                idx = temp.get_carray("idx")

                neighbor_idx[particle_idx] = {'neighbors': idx, 'cid': cid}

            fname = fname_base + "_" + dest.name + "_" + str(time)

            f = open(fname, 'w')
            pickle.dump(neighbor_idx, f)
            f.close()

            fname_cells = os.path.join(self.path + "/cells_" + str(self.rank))
            fname_cells += "_" + str(time)
            cell_manager.get_particle_representation(fname_cells)
Example #3
0
    def test(self):
        """Dynamic OpenCL binning test.
        """
        # Create a ParticleArray with double precision
        pa = solver.shock_tube_solver.standard_shock_tube_data(
            name="test", cl_precision="double", type=base.Fluid)

        # get the coordinate array
        x = pa.get('x')

        # set the scale factor and cell size. Remember that in the
        # OpenCL DomainManager, we want the bin size to be (k+1)*maxH
        scale_fac = 2.0
        h0 = pa.h[0]
        cell_size = (scale_fac + 1) * h0

        # create a shock tube solver
        s = solver.ShockTubeSolver(dim=1,
                                   integrator_type=solver.EulerIntegrator)

        # create a Particles instance with a fixed cell size provided. 
        particles = base.Particles(arrays=[pa,],
                                   min_cell_size=cell_size,
                                   max_cell_size=cell_size)

        s.setup(particles)
        s.set_final_time(0.15)
        s.set_time_step(3e-4)

        integrator = s.integrator
        cell_manager = particles.cell_manager

        # Setup the OpenCL domain manager
        ctx = solver.create_some_context()
        domain_manager = base.LinkedListManager(arrays=[pa,], context=ctx)
        assert ( domain_manager.with_cl == True )

        # bin the particles on the OpenCL device
        domain_manager.update()

        # the cell sizes for Cython and OpenCL should be the same
        assert (domain_manager.cell_size == cell_manager.cell_size)
        cell_size = domain_manager.cell_size
                
        t = 0.0
        tf = 0.15
        dt = 3e-4
        np = 400
        while t < tf:

            # update the particles
            particles.update()

            # integrate
            integrator.integrate(dt)

            # call the cell manager's update
            cell_manager.update()

            # now bin the updated data using OpenCL
            domain_manager.update()
            domain_manager.enqueue_copy()

            head = domain_manager.head["test"]
            next = domain_manager.Next["test"]
            cellids = domain_manager.cellids["test"]

            # test the bin structure for each particle
            for i in range(np):

                # find the index of the particle
                pnt = base.Point(x[i])
                index = py_find_cell_id(pnt, cell_size)

                # get the particles in the cell
                cell = cell_manager.cells_dict[index]
                cy_nbrs = cell.index_lists[0].get_npy_array()
                cy_nbrs.sort()

                # get the particle's index with OpenCL
                cl_index = cellids[i]

                # get the particles in the the cell with OpenCL
                cl_nbrs = ll_cell_neighbors( cellids[i], head, next )
                cl_nbrs.sort()

                # the lenght of the neighbors should be the same
                nclnbrs = len(cl_nbrs)
                ncynbrs = len(cy_nbrs)
                assert ( nclnbrs == ncynbrs )

                # test each neighbor
                for j in range(ncynbrs):
                    assert ( cl_nbrs[j] ==  cy_nbrs[j] )

            t += dt