Example #1
0
    def run(self, ips, imgs, para=None):
        k = para['diag'] / np.sqrt((np.array(ips.img.shape)**2).sum())
        size = tuple((np.array(ips.img.shape) * k).astype(np.int16))
        IPy.info('down sample...')
        news = []
        for img in imgs:
            if k != 0: img = tf.resize(img, size)
            if para['sigma'] != 0:
                img = ndimg.gaussian_filter(img, para['sigma'])
            news.append(img)

        IPy.info('register...')
        sr = StackReg(eval('StackReg.%s' % para['trans']))
        sr.register_stack(np.array(news), reference=para['ref'])

        mats = sr._tmats.reshape((sr._tmats.shape[0], -1))
        if k != 0: mats[:, [0, 1, 3, 4, 6, 7]] *= k
        if k != 0: mats[:, [0, 1, 2, 3, 4, 5]] /= k

        if para['tab']:
            IPy.show_table(pd.DataFrame(
                mats, columns=['A%d' % (i + 1) for i in range(mats.shape[1])]),
                           title='%s-Tmats' % ips.title)

        if para['new'] == 'None': return
        IPy.info('transform...')
        for i in range(sr._tmats.shape[0]):
            tform = tf.ProjectiveTransform(matrix=sr._tmats[i])
            img = tf.warp(imgs[i], tform)
            img -= imgs[i].min()
            img *= imgs[i].max() - imgs[i].min()
            if para['new'] == 'Inplace': imgs[i][:] = img
            if para['new'] == 'New': news[i] = img.astype(ips.img.dtype)
            self.progress(i, len(imgs))
        if para['new'] == 'New': IPy.show_img(news, '%s-reg' % ips.title)
Example #2
0
def get_transformation(Tstack, reference):
    """

    Parameters
        reference: register frame according to 'previous' or 'first' frame
    ----------
    Tstack : uint16 3D array [x,y,t]

    Returns
    -------
    outStack : uint16 3D array [x,y,t]
        in time registered slice
    trans_matrix :
        calculated transformation matrix

    """
    Tstack = np.transpose(Tstack, (2, 0, 1))
    sr = StackReg(StackReg.RIGID_BODY)
    # trans_matrix= sr.register_stack(Tstack, reference='first')
    trans_matrix = sr.register_stack(Tstack, reference=reference)
    outStack = sr.transform_stack(Tstack)
    outStack = np.uint16(outStack)
    outStack = np.transpose(outStack, (1, 2, 0))

    return outStack, trans_matrix
Example #3
0
def reg(stack):

    sr = StackReg(StackReg.TRANSLATION)
    t_mats = sr.register_stack(gauss(stack), reference='first', n_frames=1)
    t_mats[:, 0, -1] = 0
    reg_stack = sr.transform_stack(stack, tmats=t_mats)

    return reg_stack
Example #4
0
def align_simple(stack_img,
                 transformation=StackReg.TRANSLATION,
                 reference="previous"):

    sr = StackReg(transformation)
    tmats_ = sr.register_stack(stack_img, reference="previous")
    for i in range(10):
        out_stk = sr.transform_stack(stack_img, tmats=tmats_)
    return np.float32(out_stk)
def get_transformation(Tstack):
    #    Tstack=np.transpose(Tstack,(2,0,1))
    sr = StackReg(StackReg.RIGID_BODY)
    trans_matrix = sr.register_stack(Tstack, reference='first')
    # trans_matrix= sr.register_stack(Tstack, reference='previous')
    outStack = sr.transform_stack(Tstack)
    #    outStack = np.transpose(outStack,(1,2,0))
    outStack = np.uint16(outStack)
    return outStack, trans_matrix
Example #6
0
def process(pth):

    print(f'\nProcessing {pth}')

    save_pth = pth / 'reg_stacks'
    #tmat_pth = pth / 'transformation_matrices'
    try:
        save_pth.mkdir()
        #tmat_pth.mkdir()
    except FileExistsError:
        ex('Save File for reg stacks or tmats already exists. Delete and re-run.'
           )

    #tell pystack reg that we will use a translational transformation
    #there shouldn't be intra-volume rotation or shear (there might be for rod blink)
    sr = StackReg(StackReg.TRANSLATION)
    #register to the first slice and output the transfomation matrix without transforming
    #iterate through the files in the stacks folder
    files = pth.glob('*.tif')
    loop_starts = time.time()

    for i, file in enumerate(files):
        #start_time = time.time()
        print(f'Processing: {file}')
        #Intravolume registration of the fixed volume

        #load first stack and do a 3d gaussian blur with a sigma=1
        #str needed for imread, otherwise only one frame is loaded
        fixed = io.imread(str(file))  #had gauss(), testing

        t_mats = sr.register_stack(gauss(fixed), reference='first', n_frames=1)
        #remove the x shift from all the matrices - horizontal movement isn't relevant here,
        #the volume should be acquired quickly enough that this isn't a problem.
        t_mats[:, 0, -1] = 0
        fixed = sr.transform_stack(fixed, tmats=t_mats)

        #Using previous to see if I could get rid of wigge. Didn't seem to work.
        #t_mats = sr.register_stack(gauss(fixed), reference='previous')
        #t_mats[:,1,-1] = 0
        #fixed = sr.transform_stack(fixed, tmats=t_mats)
        #save the register fixed volume in the parent directory for reference
        save_name = save_pth / f'reg_{file.name}'
        #io.imsave(arr=img_as_uint(fixed), fname=str(save_name))
        io.imsave(arr=img_as_float32(fixed), fname=str(save_name))
        #get fixed out of memory - may not be worth the time?
        print(f'Intravolume registration complete. File saved at {save_name}')

        #end_time = time.time()
        #print(f'{file} was processed in {(end_time - start_time):.2f}s. \
        #\n{((end_time - loop_starts)/60):.2f} minutes have elapsed.')

        #de;ete emumerate
        #if i==4:
        #ex('auto break')
    end_time = time.time()
    print(f'Run took {(end_time-loop_starts)/60:.2f} minutes')
Example #7
0
def align_stack(stack_img,
                ref_image_void=True,
                ref_stack=None,
                transformation=StackReg.TRANSLATION,
                reference="previous"):
    """Image registration flow using pystack reg"""

    # all the options are in one function

    sr = StackReg(transformation)

    if ref_image_void:
        tmats_ = sr.register_stack(stack_img, reference=reference)

    else:
        tmats_ = sr.register_stack(ref_stack, reference=reference)
        out_ref = sr.transform_stack(ref_stack)

    out_stk = sr.transform_stack(stack_img, tmats=tmats_)
    return np.float32(out_stk), tmats_
Example #8
0
def dewiggle(stk):
    
    print('Wiggles')
    sr = StackReg(StackReg.TRANSLATION)
    tmat = sr.register_stack(stk, reference='previous')
    #clear y shifts
    #tmat[:,1,-1] = 0
    shifts = tmat[:,0,-1]
    frame_ind = np.arange(len(shifts))
    #fit a line to the shifts to remove drift
    coeff = np.polyfit(frame_ind, shifts,3)
    drift_line = np.poly1d(coeff)
    wiggles = shifts-drift_line(frame_ind)
    tmat[:,0,-1] = wiggles
    wiggleless = sr.transform_stack(stk, tmats=tmat)
    
    return wiggleless
Example #9
0
def registration(hstack, bfchannel, nbchannels, file, output_dir):
    print("This is the bfchannel: " + bfchannel)
    hstackreg = []
    sr = StackReg(StackReg.RIGID_BODY)

    # register each frame to the previous (already registered) one
    # this is what the original StackReg ImageJ plugin uses

    tmats = sr.register_stack(hstack[:,bfchannel,:,:], reference='previous')
    for channel in range(nbchannels):
        hstackreg[:,channel,:,:] = sr.transform_stack(hstack[:,channel,:,:])

    # tmats contains the transformation matrices -> they can be saved
    # and loaded at another time
    np.save(os.path.join(output_dir,file,'tmats.npy'), tmats)

    return hstackreg
Example #10
0
def align_stack_iter(
        stack,
        ref_stack_void=True,
        ref_stack=None,
        transformation=StackReg.TRANSLATION,
        method=("previous", "first"),
        max_iter=2,
):
    if ref_stack_void:
        ref_stack = stack

    for i in range(max_iter):
        sr = StackReg(transformation)
        for ii in range(len(method)):
            print(ii, method[ii])
            tmats = sr.register_stack(ref_stack, reference=method[ii])
            ref_stack = sr.transform_stack(ref_stack)
            stack = sr.transform_stack(stack, tmats=tmats)

    return np.float32(stack)
Example #11
0
def get_stackreg_shifts(stack):
    """
    Calculate alignment shifts for image stack using PyStackReg.

    Args
    ----------
    stack : Hyperspy Signal2D
        Image stack to align.

    Returns
    ----------
    sr_shifts : NumPy array
        Calculated alignment shifts.

    """
    sr = StackReg(StackReg.TRANSLATION)
    sr_shifts = sr.register_stack(stack.data)
    sr_shifts = np.array(
        [sr_shifts[i][:-1, 2][::-1] for i in range(0, len(sr_shifts))])
    return sr_shifts
Example #12
0
def calculate_shifts_stackreg(stack):
    """

    Calculate shifts using PyStackReg.

    Args
    ----------
    stack : TomoStack object
        The image series to be aligned

    Returns
    ----------
    shifts : NumPy array
        The X- and Y-shifts to be applied to each image

    """
    sr = StackReg(StackReg.TRANSLATION)
    shifts = sr.register_stack(stack.data, reference='previous')
    shifts = -np.array([i[0:2, 2] for i in shifts])
    return shifts
Example #13
0
def process(pth):
    
    print(f'\nProcessing {pth}')
    
    save_pth = pth / 'vol_reg_stacks'
    tmat_pth = pth / 'vol_transformation_matrices'
    try:
        save_pth.mkdir()
        tmat_pth.mkdir()
    except FileExistsError:
        ex('Save File for reg stacks or tmats already exists. Delete and re-run.')
        
    #Intravolume registration of the fixed volume
    
    print('Doing intravolume registration.')
    #load first stack and do a 3d gaussian blur with a sigma=1
    #str needed for imread, otherwise only one frame is loaded
    fixed = io.imread(str(pth/'stack0.tif')) #had gauss(), testing
    #tell pystack reg that we will use a translational transformation
    #there shouldn't be intra-volume rotation or shear (there might be for rod blink)
    sr = StackReg(StackReg.TRANSLATION)
    #register to the first slice and output the transfomation matrix without transforming
    t_mats = sr.register_stack(gauss(fixed), reference='first', n_frames=1)
    #remove the x shift from all the matrices - horizontal movement isn't relevant here, 
    #the volume should be acquired quickly enough that this isn't a problem.
    t_mats[:,0,-1] = 0
    fixed = sr.transform_stack(fixed, tmats=t_mats)
    #save the register fixed volume in the parent directory for reference
    save_name = pth.parent / 'fixed.tif'
    #io.imsave(arr=img_as_uint(fixed), fname=str(save_name))
    io.imsave(arr=fixed.astype('float32'), fname=str(save_name))
    #get fixed out of memory - may not be worth the time?
    del fixed
    print(f'Intravolume registration complete. File saved at {save_name}')
    
    #Volume registration
    
    #switch to tmat folder because i dont know how to set the output folder to save 
    #the transformation mats. elastix.Execute() automatically saves
    #TransformParameters.0.txt in the current directory
    os.chdir(tmat_pth)
    
    #reload fixed image with sitk so it is in the right format
    fixed = sitk.ReadImage(str(save_name))
    #set up for multivolume registration
    parameterMap = sitk.GetDefaultParameterMap('affine')
    elastixImageFilter = sitk.ElastixImageFilter()
    elastixImageFilter.SetFixedImage(fixed)
    elastixImageFilter.SetParameterMap(parameterMap)
    #test 11-8-2019
    parameterMap['Image Sampler'] = ['Full']
    #parameterMap['Metric'] = ['AdvancedMeanSquares']
    parameterMap['Optimiser'] = ['FullSearch']
    
    #iterate through the files in the stacks folder
    files = sorted(list(pth.glob('*.tif')), key=sort_key)
    loop_starts  = time.time()
    for i,file in enumerate(files):
        #i=0 #use first stack
        #register to previous stack
        if i > 1:
            fixed = sitk.ReadImage(str(save_name))
            elastixImageFilter.SetFixedImage(fixed)
        start_time = time.time()
        print(f'Processing: {file}')
        #load the volume
        #Do affine registration so that volume can shear to do the intravolume registration
        #this code is equivalent to the lines below, but allows the export of the
        #transformation matrices
        #moving = sitk.ReadImage(file)
        #reg_volume = sitk.Elastix(fixed, moving, "affine")
        elastixImageFilter.SetMovingImage(sitk.ReadImage(str(file)))
        elastixImageFilter.Execute()

        reg_volume = elastixImageFilter.GetResultImage()
        #can get the transform parameters, but have no idea how to save them
        #maybe just through normal python file manipulation?
        #transformParameterMap = elastixImageFilter.GetTransformParameterMap()
        
        #save volume
        save_name = save_pth / f'reg_{file.name}'
        sitk.WriteImage(reg_volume, str(save_name))
        
        #transformation was saved on execute, now rename.
        #tmat_name = tmat_pth / f'tmat_{file.name}'
        os.rename('TransformParameters.0.txt', f'tmat_{file.stem}.txt')
        
        end_time = time.time()
        print(f'{file} was processed in {(end_time - start_time):.2f}s. \
              \n{((end_time - loop_starts)/60):.2f} minutes have elapsed.')
Example #14
0
def fix(stk,divisor=1):
    sr = StackReg(StackReg.TRANSLATION)
    
    #Load Stack
    
    #Step 1 - Remove Wiggles
    print('Wiggles')
    tmat = sr.register_stack(stk, reference='previous')
    #clear y shifts
    #tmat[:,1,-1] = 0
    shifts = tmat[:,0,-1]
    frame_ind = np.arange(len(shifts))
    #fit a line to the shifts to remove drift
    coeff = np.polyfit(frame_ind, shifts,3)
    drift_line = np.poly1d(coeff)
    wiggles = shifts-drift_line(frame_ind)
    tmat[:,0,-1] = wiggles
    
    #Step 1 - fix curvature along y - NOT GOOD IF BREATHING ARTIFACTS PRESENT
    print('Curvature Y')
    #polyfit is too smooth if there are breathing artifacts present - only affect y curvature
    #temp = sr.register_stack(stk[::divisor,:,::divisor], reference='first', n_frames=1, moving_average=5)
    #coeffy = np.polyfit(frame_ind[::divisor], temp[:,1,-1],3)
    #y_line = np.poly1d(coeffy)
    #tmat[:,1,-1] = y_line(frame_ind)
    
    #now just register all frames - bumps should be muted somewhat by using the moving average
    #can gaussian filter if too bumpy
    temp = sr.register_stack(stk, reference='first', n_frames=1, moving_average=5)
    tmat[:,1,-1] = temp[:,1,-1]
    
    
    #use the combined matrix to fix the x-wiggles and the z-y curvature
    print('Transform')
    yless_wiggleless = sr.transform_stack(stk, tmats=tmat)
    
    #Step 2 - fix curvature along x
    print('Curvature X')
    temp_rot = np.rot90(yless_wiggleless, k=-1, axes=(0,2))
    temp_stk = np.empty((temp_rot.shape))
    #temp_stk[:256]=temp_rot[256:]
    #temp_stk[256:]=temp_rot[:256]
    half = int(temp_stk.shape[0]/2)
    temp_stk[:half]=temp_rot[half:]
    temp_stk[half:]=temp_rot[:half]
    
    #ind = int(256/divisor) #normally 256 is halfway thru 512
    ind = int(half/divisor)
    temp = sr.register_stack(temp_stk[::divisor,:,::divisor], reference='first', n_frames=1, moving_average=5)
    final_mat = np.empty((temp.shape))
    final_mat[:ind] = temp[ind:]
    final_mat[ind:] = temp[:ind]
    final_mat[:,0,-1] = 0
    coeffx = np.polyfit(frame_ind[::divisor], final_mat[:,1,-1],3)
    x_line = np.poly1d(coeffx)
    final_mat_whole = np.zeros((frame_ind.shape[0], 3, 3))
    final_mat_whole[:,0,0], final_mat_whole[:,1,1], final_mat_whole[:,2,2] = 1,1,1
    final_mat_whole[:,1,-1] = x_line(frame_ind)
    
    #finally fix the x-z curvature
    print('Transform X')
    fixed = sr.transform_stack(temp_rot, tmats=final_mat_whole)
    final = np.rot90(fixed, k=1, axes=(0,2))
    
    return final
blrft = np.fft.fftshift(np.fft.fft2(imgs[0])) / np.fft.fftshift(
    np.fft.fft2(dblimg))
blr = np.fft.ifft2(np.fft.ifftshift(np.abs(blrft)))
blr = np.fft.fftshift(np.abs(blr))
r = (imgs[0].shape[0] - 1) // 2
c = (imgs[0].shape[1] - 1) // 2
blur = blr[r - kern // 2:r + kern // 2 + 1, c - kern // 2:c + kern // 2 + 1]
blur /= blur.sum()
blur = gaussian_filter((kern, kern), 1)
# blur = np.ones((kern,kern))/kern**2
# print(blur/blur.sum())
io.imshow(np.uint8(blur * 255))

# Image Regiseration using translation estimation and Affine Matrix Calculation
sr = StackReg(StackReg.TRANSLATION)
affmats = sr.register_stack(imgs, reference='first')

#Interpolation of Median average of LR Images as initial---------------------------------------
init = np.median(imgs, axis=0)
init = transform.rescale(init, scale, anti_aliasing=False)
io.imshow(np.uint8(init))

#Iterative L1-Norm Minimization for optimization of HR image-----------------------------------
X = np.copy(init)
invblur = np.flip(blur)
k = n_img
for i in range(n_iter):
    ML = np.zeros(X.shape)
    h, w = X.shape
    for j in range(k):
        tmpTmat = np.flip(affmats[j]).T