Example #1
0
def eval_matrix(config, n_taylor=10):
    filters, filter_lambdas = load_filters(config)
    print 'Calculating Taylor coefficients matrix for n_taylor = %i.' % n_taylor
    bt = StarlightBase(config['base_file'], config['base_path'])
    z = np.arange(config['z_ini'], config['z_fin'] + config['z_delta'],
                  config['z_delta'])
    m, a, f = taylor_matrix_ssp(config['taylor_file'], bt, n_taylor, z,
                                filters)
    config['filters'] = ','.join(sorted(config['filters'].keys()))
    f.attrs.update(config)
    f.close()
Example #2
0
def test_matrix_time():
    print 'Test time to calculate all the matrix over a range of redshifts of (0, 7, 0.001)'
    bt = StarlightBase(
        '/Users/william/BasesDir/Base.bc03.Padova1994.chab.All.hdf5',
        'Base.bc03.Padova1994.chab.All')
    z = np.arange(0.001, 1, 0.001)
    for n_taylor in range(1, 10):
        t0 = time.time()
        aux_fname = '/Users/william/tmp_out/m_av.hdf5'
        os.unlink(aux_fname)
        m, a, f = taylor_matrix_ssp(aux_fname, bt, n_taylor, z, filters)
        print 'n_taylor, t:', n_taylor, time.time() - t0
        f.close()
Example #3
0
def test_magnitudes():
    bt = StarlightBase(
        '/Users/william/BasesDir/Base.bc03.Padova1994.chab.All.hdf5',
        'Base.bc03.Padova1994.chab.All')
    i_met = 0
    i_z = 0

    z = np.array([0.5, 1.0, 1.5])

    # Generate random parameters to test:
    z_age_limit = cosmo.age(0.01).to('yr').value
    t0_young = np.log10(6e6) + np.random.rand() * (np.log10(5e9) -
                                                   np.log10(6e6))
    tau_young = np.log10(.001) + np.random.rand() * (np.log10(.001) -
                                                     np.log10(1000))
    t0_old = np.log10(1e9) + np.random.rand() * (np.log10(z_age_limit) -
                                                 np.log10(1e9))
    tau_old = np.log10(.001) + np.random.rand() * (np.log10(.001) -
                                                   np.log10(1000))
    frac_young = np.random.rand()
    a_v = 2 * np.random.rand()

    print 'Parameters: ', z_age_limit, t0_young, tau_young, t0_old, tau_old, frac_young, a_v

    # Create the CSP with it
    csp_model = n_component(bt.ageBase)
    csp_model.add_exp(t0_young, tau_young, frac_young)
    csp_model.add_exp(t0_old, tau_old, 1 - frac_young)

    # Calculate the analytic integral
    spec = np.sum(bt.f_ssp[i_met] * csp_model.get_sfh()[:, np.newaxis],
                  axis=0)  # Base spectra [??units??]
    spec *= 10**(-0.4 * (Cardelli_RedLaw(bt.l_ssp) * a_v))
    mags_analytic = mag_in_z(bt.l_ssp, spec, z[i_z], filters)

    # Calculate the Taylor Approximation
    for n_taylor in range(1, 10):
        t0 = time.time()
        m, a, f = taylor_matrix_ssp(bt, n_taylor, z, filters)
        mags_taylor = mag_in_z_taylor(csp_model.get_sfh(), a_v, i_z, i_met, m,
                                      a)
        print 'n_taylor, t, max |delta_m| = ', n_taylor, time.time(
        ) - t0, np.max(np.abs(mags_taylor - mags_analytic))
Example #4
0
    def __init__(self,
                 template_magnitudes,
                 filters,
                 z,
                 base_file,
                 base_path,
                 taylor_file=None,
                 magerr=1e-14,
                 is_single=False):

        # Template magnitudes
        self.template_magnitudes = template_magnitudes
        # self.chi2_constant = np.average(template_magnitudes)  # This will be summed to chi2, avoiding to get them ~ 0.
        self.filters = filters
        self.z = z
        self.z_age_limit = cosmo.age(z).to('yr').value

        # Base
        self.bt = StarlightBase(base_file, base_path)
        ## Metallicity
        aux = np.log10(self.bt.metBase)
        aux2 = (aux[1:] - aux[0:-1]) / 2
        self.met_min = aux - np.append(aux2[0], aux2)
        self.met_max = aux + np.append(aux2, aux2[-1])
        self.met_low = min(self.met_min)
        self.met_upp = max(self.met_max)

        # Extinction Law
        self.q = Cardelli_RedLaw(self.bt.l_ssp)

        # If Taylor expansion:
        if taylor_file:
            self.m, self.a, self.tz, self.int_f = load_taylor(config, filters)

        # Magnitude error
        self.magerr = magerr
file_fit = h5py.File('%s/%s' % (save_dir, config['fit_bpz_outfile']), 'r')

# Doing this copy due bug: https://github.com/h5py/h5py/issues/480
params = np.copy(file_fit.get('/model_parameters').value)

n_z, n_t, n_models, n_parameters = params.shape

file_fit_processed = h5py.File('%s/%s' % (save_dir, config['fit_bpz_post']), 'w')
post_parameters_data = np.empty(
    dtype=np.dtype([('at_mass', np.float), ('at_flux', np.float), ('metallicity', np.float), ('a_v', np.float),
                    ('m2l', np.float)]),
    shape=(n_z, n_t, n_models))

# m2l_spec = np.zeros((n_z, n_t, n_models, len(config["m2l_lambdas"])))

bt = StarlightBase(config['base_file'], config['base_path'])
bt.ageBase[bt.ageBase == 0] = 1e5  # Avoid NaN on log10(age)
i_norm = np.argmin((bt.l_ssp - config['lambda_norm']) ** 2)
# i_met = int(np.argwhere(bt.metBase == metallicity))
l2m_norm_ssp = np.empty((len(bt.metBase), len(bt.ageBase)))
for i_met in range(len(bt.metBase)):
    for i_age in range(len(bt.ageBase)):
        l2m_norm_ssp[i_met, i_age] = bt.f_ssp[i_met, i_age, i_norm]

# from pystarlight, eval l2m on filter
filter_m2l = readfilterfile(config['filter_m2l'], ).data
aux_l = np.arange(filter_m2l['lambda'].min(), filter_m2l['lambda'].max())
filter_m2l_new = np.empty(len(aux_l), dtype=filter_m2l.dtype)
filter_m2l_new['lambda'] = aux_l
filter_m2l_new['transm'] = np.interp(aux_l, filter_m2l['lambda'], filter_m2l['transm'])
filter_m2l = filter_m2l_new
Example #6
0
# For the A_V Arrow:
e_c1 = Cardelli_RedLaw([4580])[0] - Cardelli_RedLaw([7680])[0]
e_c2 = Cardelli_RedLaw([3650])[0] - Cardelli_RedLaw([6440])[0]

# M/L calculations
## Filter
filter_m2l = readfilterfile(config['filter_m2l'], norm=False).data
aux_l = np.arange(filter_m2l['lambda'].min(), filter_m2l['lambda'].max())
filter_m2l_new = np.empty(len(aux_l), dtype=filter_m2l.dtype)
filter_m2l_new['lambda'] = aux_l
filter_m2l_new['transm'] = np.interp(aux_l, filter_m2l['lambda'], filter_m2l['transm'])
filter_m2l = filter_m2l_new
LsunFilter = calc_LsunFilter(filter_m2l)

## Base
bt = StarlightBase(config['base_file'], config['base_path'])
m2l_ssp = np.empty((len(bt.metBase), len(bt.ageBase)))
i_norm = np.argmin((bt.l_ssp - config['lambda_norm']) ** 2)
l2m_norm_ssp = np.empty((len(bt.metBase), len(bt.ageBase)))
for i_met in range(len(bt.metBase)):
    for i_age in range(len(bt.ageBase)):
        aux = np.interp(filter_m2l['lambda'], bt.l_ssp, bt.f_ssp[i_met, i_age])
        m2l_ssp[i_met, i_age] = bt.Mstars[i_met, i_age] * LsunFilter / np.trapz(aux * filter_m2l['transm'],
                                                                                filter_m2l['lambda'])
        l2m_norm_ssp[i_met, i_age] = bt.f_ssp[i_met, i_age, i_norm]

# Open BPZ magnitudes
templates = np.loadtxt(config['bpz_library'], np.str)
aux = templates[:, 0] if len(templates.shape) > 1 else templates
templates_data = [
    np.loadtxt('%s/%s' % (config['bpz_library_dir'], t), dtype=np.dtype([('lambda', np.float), ('flux', np.float)]))
Example #7
0
    #         guess = lib_guess()
    #         for key in guess.keys():
    #             lib_param[key] = guess[key]
    #         print lib_param
    #
    #         spec = lib.get_model_spectrum(0)[0]
    #         # plt.clf()
    #         cut = np.bitwise_and(spec['wl'] > 3000, spec['wl'] < 9000)
    #         plt.plot(spec['wl'][cut], spec['flux'][cut])
    #         # raw_input('next...')

    f = FilterSet('/Users/william/doutorado/photo_filters/Alhambra_24.hdf5')
    f.load('Alhambra_24', 1)
    n_filters = len(f.filter_wls)

    aux_base = StarlightBase(base_file, base_path)
    base_maxage = np.max(aux_base.ageBase)
    min_z_age = cosmo.age(0.001).to('yr').value
    if base_maxage > min_z_age:
        base_maxage = min_z_age

    allow_overwrite_bpz = True
    allow_overwrite_lib = True

    bpz_lib_file = '/Users/william/tmp_out/pzT_parametric_noelines.hdf5'
    parametric_lib = '/Users/william/tmp_out/zT_weights_noelines.hdf5'
    if allow_overwrite_bpz:
        try:
            os.unlink(bpz_lib_file)
        except OSError:
            pass
Example #8
0
################################################################################


################################################################################
##########
########## Population model setup
##########
################################################################################

logger.setLevel(-1)
args = parse_args()

logger.info("Loading base %s", path.basename(args.baseFile))
t1 = time.clock()
base = StarlightBase(args.baseFile, args.baseDir)
l_ssp = np.arange(3650.0, 6850.0, 2.0)
f_ssp = base.f_sspResam(l_ssp)
logger.info("Took %.2f seconds to read the base (%d files)" % (time.clock() - t1, base.sspfile.size))
wl_norm_window = (l_ssp < 5680.0) & (l_ssp > 5590.0)

################################################################################
##########
########## Morphology model setup
##########
################################################################################

logger.info("Creating original B-D model.")
norm_model = get_model(args.trueModel, with_default=True)
norm_params = np.array(norm_model.getParams(), dtype=norm_model.dtype)
logger.info("Original model at normalization window:\n%s\n" % str(norm_model))
Example #9
0
norm_h = norm_model.disk.h.value
plt.suptitle(r'Modelo original (sem convoluir com PSF)')
gs.tight_layout(fig, rect=[0, 0, 1, 0.95])
plt.savefig('plots/tese/simulation_initmodel.pdf')

################################################################################
##########
########## Plot original population model 
##########
################################################################################
logger.debug('Plotting original population model.')
#index_norm = find_nearest_index(l_ssp, 5635.0)

logger.info('Loading base %s', path.basename(args.baseFile))
t1 = time.clock()
base = StarlightBase(args.baseFile, args.baseDir)
wl = np.arange(3650.0, 6850.0, 2.0)
f_ssp = base.f_sspResam(wl)
logger.info('Took %.2f seconds to read the base (%d files)' % (time.clock() - t1, base.sspfile.size))
wl_norm_window = (wl < 5680.0) & (wl > 5590.0)

t0 = base.ageBase.max()

r = np.arange(30)
tau = tau_r(args.tau0, args.dtau_dr, r)
print tau

bulge_sfh_tau0 = get_synth_sfh(t0, args.tau0, base.ageBase)
bulge_sfh_tau1 = get_synth_sfh(t0, 4e9, base.ageBase)
bulge_sfh_tau2 = get_synth_sfh(t0, 8e9, base.ageBase)
disk_sfh_tauInf = get_synth_sfh(t0, 1e12, base.ageBase)
Example #10
0
def main_CSP(argv):
    from pystarlight.util.base import StarlightBase
    from pystarlight.util.redenninglaws import calc_redlaw
    base_select = 'Padova2000.salp'
    base_file = '/Users/lacerda/LOCAL/data/Base.bc03.h5'
    base = StarlightBase(base_file, base_select, hdf5=True)
    M = 1e10
    tauV = np.linspace(0, 1, 10)
    t0 = np.linspace(0, 20e9, 11)
    tau = np.logspace(9, 11, 12)
    q = calc_redlaw(base.l_ssp, R_V=3.1, redlaw='CCM')
    t = base.ageBase.max() - base.ageBase[::-1]
    steps = (t[1:] - t[:-1]) / 2.0
    t_edges = np.empty((len(t) + 1))
    t_edges[1:-1] = t[1:] - steps
    t_edges[0] = t[0] - steps[0]
    if t_edges[0] < 0:
        t_edges[0] = 0.
    t_edges[-1] = t[-1] + steps[-1]
    if t_edges[-1] > t[-1]:
        t_edges[-1] = t[-1]
    # shape_model = (len(t0), len(tau), len(tauV))
    M__t0tautauVl = np.ndarray((len(t0), len(tau), len(tauV), len(base.l_ssp)),
                               dtype='float')
    dM__t0taut = np.ndarray((len(t0), len(tau), base.nAges), dtype='float')
    for it0, _t0 in enumerate(t0):
        for itau, _tau in enumerate(tau):
            dM = []
            for i in range(len(t)):
                l, r = t_edges[i], t_edges[i + 1]
                dM.append(deltaM_integral(M, t.max(), _t0, _tau, l, r))
            # print 't0:', _t0,' tau:', _tau, ' dM:', dM[-1]
            dM = np.array(dM)
            dM__t0taut[it0, itau, :] = dM
            for itauV, _tV in enumerate(tauV):
                norm_lambda = 5635.0
                spec_window = np.bitwise_and(
                    np.greater(base.l_ssp, norm_lambda - 45.0),
                    np.less(base.l_ssp, norm_lambda + 45.0))
                # spec_window = (base.l_ssp > norm_lambda - 45.0) & (base.l_ssp < norm_lambda + 45.0)
                spec = np.tensordot(
                    base.f_ssp.sum(axis=0) * np.exp(_tV * q), dM[::-1], (0, 0))
                spec_norm = np.median(spec[spec_window])
                M__t0tautauVl[it0, itau, itauV, :] = spec / spec_norm
    # Save FITS
    from astropy.io import fits
    hdu = fits.HDUList()
    header = fits.Header()
    header['NL'] = len(base.l_ssp)
    header['NBURSTINI'] = len(t0)
    header['NBURSTLENGTH'] = len(tau)
    header['NTAUV'] = len(tauV)
    hdu.append(fits.PrimaryHDU(header=header))
    hdu.append(fits.ImageHDU(data=t, name='ages'))
    hdu.append(fits.ImageHDU(data=t_edges, name='ages_edges'))
    hdu.append(fits.ImageHDU(data=t0, name='burst_ini'))
    hdu.append(fits.ImageHDU(data=tau, name='burst_length'))
    hdu.append(fits.ImageHDU(data=tauV, name='tau_V'))
    tmp = fits.ImageHDU(data=dM__t0taut, name='dM')
    tmp.header['COMMENT'] = 'Dimension [BURSTINI,BURSTLENGTH,AGES]'
    hdu.append(tmp)
    tmp = fits.ImageHDU(data=M__t0tautauVl, name='F_CSP')
    tmp.header['COMMENT'] = 'Dimension [BURSTINI,BURSTLENGTH,TAUV,LAMBDA]'
    hdu.append(tmp)
    hdu.append(fits.ImageHDU(data=base.l_ssp, name='L_CSP'))
    hdu.writeto('CSPModels.fits')