Example #1
0
def yuv_to_rgb(x: torch.Tensor) -> torch.Tensor:
    transformation_matrix = torch.tensor(
        ((1.000, 0.000, 1.140), (1.000, -0.395, -0.581),
         (1.000, 2.032, 0.000)),
        **tensor_meta(x),
    )
    return transform_channels_linearly(x, transformation_matrix)
Example #2
0
def rgb_to_yuv(x: torch.Tensor) -> torch.Tensor:
    transformation_matrix = torch.tensor(
        ((0.299, 0.587, 0.114), (-0.147, -0.289, 0.436),
         (0.615, -0.515, -0.100)),
        **tensor_meta(x),
    )
    return transform_channels_linearly(x, transformation_matrix)
Example #3
0
    def test_tensor_meta_kwargs(self):
        dtype = torch.bool

        x = torch.empty(())

        actual = meta.tensor_meta(x, dtype=dtype)["dtype"]
        desired = dtype
        self.assertEqual(actual, desired)
Example #4
0
    def test_tensor_meta(self):
        tensor_meta = {"dtype": torch.bool, "device": torch.device("cpu")}

        x = torch.empty((), **tensor_meta)

        actual = meta.tensor_meta(x)
        desired = tensor_meta
        self.assertDictEqual(actual, desired)
Example #5
0
    def test_kwargs(main):
        dtype = torch.bool

        x = torch.empty(())

        actual = meta.tensor_meta(x, dtype=dtype)["dtype"]
        desired = dtype
        assert actual == desired
Example #6
0
    def test_main(self):
        tensor_meta = {"dtype": torch.bool, "device": torch.device("cpu")}

        x = torch.empty((), **tensor_meta)

        actual = meta.tensor_meta(x)
        desired = tensor_meta
        assert actual == desired
Example #7
0
def rgb_to_grayscale(x: torch.Tensor) -> torch.Tensor:
    transformation_matrix = torch.tensor(((0.299, 0.587, 0.114), ),
                                         **tensor_meta(x))
    return transform_channels_linearly(x, transformation_matrix)
Example #8
0
 def forward(self, input: torch.Tensor) -> torch.Tensor:
     size = self._extract_size(input)
     meta = meta_.tensor_meta(input)
     noise = torch.rand(size, **meta)
     return join_channelwise(input, noise)