def direct_dynamic_NE(robo): """Computes Direct Dynamic Model using Newton-Euler formulation Parameters ========== robo : Robot Instance of robot description container Returns ======= symo.sydi : dictionary Dictionary with the information of all the sybstitution """ wi = ParamsInit.init_vec(robo) # antecedent angular velocity, projected into jth frame w = ParamsInit.init_w(robo) jaj = ParamsInit.init_vec(robo, 6) jTant = ParamsInit.init_mat(robo, 6) # Twist transform list of Matrices 6x6 beta_star = ParamsInit.init_vec(robo, 6) grandJ = ParamsInit.init_mat(robo, 6) link_acc = ParamsInit.init_vec(robo, 6) H_inv = ParamsInit.init_scalar(robo) juj = ParamsInit.init_vec(robo, 6) # Jj*aj / Hj Tau = ParamsInit.init_scalar(robo) grandVp = ParamsInit.init_vec(robo, 6) grandVp.append(Matrix([robo.vdot0 - robo.G, robo.w0])) symo = symbolmgr.SymbolManager() symo.file_open(robo, 'ddm') title = 'Direct dynamic model using Newton - Euler Algorith' symo.write_params_table(robo, title, inert=True, dynam=True) # init transformation antRj, antPj = compute_rot_trans(robo, symo) for j in xrange(1, robo.NL): compute_omega(robo, symo, j, antRj, w, wi) compute_screw_transform(robo, symo, j, antRj, antPj, jTant) if robo.sigma[j] == 0: jaj[j] = Matrix([0, 0, 0, 0, 0, 1]) elif robo.sigma[j] == 1: jaj[j] = Matrix([0, 0, 1, 0, 0, 0]) for j in xrange(1, robo.NL): compute_beta(robo, symo, j, w, beta_star) compute_link_acc(robo, symo, j, antRj, antPj, link_acc, w, wi) grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j]) for j in reversed(xrange(1, robo.NL)): replace_beta_J_star(robo, symo, j, grandJ, beta_star) compute_Tau(robo, symo, j, grandJ, beta_star, jaj, juj, H_inv, Tau) if robo.ant[j] != -1: compute_beta_J_star(robo, symo, j, grandJ, jaj, juj, Tau, beta_star, jTant, link_acc) for j in xrange(1, robo.NL): compute_acceleration(robo, symo, j, jTant, grandVp, juj, H_inv, jaj, Tau, link_acc) for j in xrange(1, robo.NL): compute_coupled_forces(robo, symo, j, grandVp, grandJ, beta_star) symo.file_close() return symo
def direct_dynamic_NE(robo): """Computes Direct Dynamic Model using Newton-Euler formulation Parameters ========== robo : Robot Instance of robot description container Returns ======= symo.sydi : dictionary Dictionary with the information of all the sybstitution """ wi = ParamsInit.init_vec(robo) # antecedent angular velocity, projected into jth frame w = ParamsInit.init_w(robo) jaj = ParamsInit.init_vec(robo, 6) jTant = ParamsInit.init_mat(robo, 6) # Twist transform list of Matrices 6x6 beta_star = ParamsInit.init_vec(robo, 6) grandJ = ParamsInit.init_mat(robo, 6) link_acc = ParamsInit.init_vec(robo, 6) H_inv = ParamsInit.init_scalar(robo) juj = ParamsInit.init_vec(robo, 6) # Jj*aj / Hj Tau = ParamsInit.init_scalar(robo) grandVp = ParamsInit.init_vec(robo, 6) grandVp.append(Matrix([robo.vdot0 - robo.G, robo.w0])) symo = symbolmgr.SymbolManager() symo.file_open(robo, 'ddm') title = 'Direct dynamic model using Newton - Euler Algorith' symo.write_params_table(robo, title, inert=True, dynam=True) # init transformation antRj, antPj = compute_rot_trans(robo, symo) for j in xrange(1, robo.NL): compute_omega(robo, symo, j, antRj, w, wi) compute_screw_transform(robo, symo, j, antRj, antPj, jTant) if robo.sigma[j] == 0: jaj[j] = Matrix([0, 0, 0, 0, 0, 1]) elif robo.sigma[j] == 1: jaj[j] = Matrix([0, 0, 1, 0, 0, 0]) for j in xrange(1, robo.NL): compute_beta(robo, symo, j, w, beta_star) compute_link_acc(robo, symo, j, antRj, antPj, link_acc, w, wi) grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j]) for j in reversed(xrange(1, robo.NL)): replace_beta_J_star(robo, symo, j, grandJ, beta_star) compute_Tau(robo, symo, j, grandJ, beta_star, jaj, juj, H_inv, Tau) if robo.ant[j] != - 1: compute_beta_J_star(robo, symo, j, grandJ, jaj, juj, Tau, beta_star, jTant, link_acc) for j in xrange(1, robo.NL): compute_acceleration(robo, symo, j, jTant, grandVp, juj, H_inv, jaj, Tau, link_acc) for j in xrange(1, robo.NL): compute_coupled_forces(robo, symo, j, grandVp, grandJ, beta_star) symo.file_close() return symo
def direct_dynmodel(robo, symo): """ Compute the Direct Dynamic Model using Newton-Euler algorithm for robots with floating and fixed base. Parameters: robo: Robot - instance of robot description container symo: symbolmgr.SymbolManager - instance of symbol manager """ # antecedent angular velocity, projected into jth frame # j^omega_i wi = ParamsInit.init_vec(robo) # j^omega_j w = ParamsInit.init_w(robo) # j^a_j -- joint axis in screw form jaj = ParamsInit.init_vec(robo, 6) # Twist transform list of Matrices 6x6 grandJ = ParamsInit.init_mat(robo, 6) jTant = ParamsInit.init_mat(robo, 6) gamma = ParamsInit.init_vec(robo, 6) beta = ParamsInit.init_vec(robo, 6) zeta = ParamsInit.init_vec(robo, 6) h_inv = ParamsInit.init_scalar(robo) jah = ParamsInit.init_vec(robo, 6) # Jj*aj*Hinv_j tau = ParamsInit.init_scalar(robo) star_inertia = ParamsInit.init_mat(robo, 6) star_beta = ParamsInit.init_vec(robo, 6) qddot = ParamsInit.init_scalar(robo) grandVp = ParamsInit.init_vec(robo, 6) react_wrench = ParamsInit.init_vec(robo, 6) torque = ParamsInit.init_scalar(robo) # init transformation antRj, antPj = compute_rot_trans(robo, symo) # first forward recursion for j in xrange(1, robo.NL): # compute spatial inertia matrix for use in backward recursion grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j]) # set jaj vector if robo.sigma[j] == 0: jaj[j] = Matrix([0, 0, 0, 0, 0, 1]) elif robo.sigma[j] == 1: jaj[j] = Matrix([0, 0, 1, 0, 0, 0]) # compute j^omega_j and j^omega_i compute_omega(robo, symo, j, antRj, w, wi) # compute j^S_i : screw transformation matrix compute_screw_transform(robo, symo, j, antRj, antPj, jTant) # compute j^gamma_j : gyroscopic acceleration (6x1) compute_gamma(robo, symo, j, antRj, antPj, w, wi, gamma) # compute j^beta_j : external+coriolis+centrifugal wrench (6x1) compute_beta(robo, symo, j, w, beta) # decide first link first_link = 0 if robo.is_floating else 1 # first backward recursion - initialisation step for j in reversed(xrange(first_link, robo.NL)): if j == first_link and robo.is_floating: # compute spatial inertia matrix for base grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j]) # compute 0^beta_0 compute_beta(robo, symo, j, w, beta) replace_star_terms( symo, grandJ, beta, j, star_inertia, star_beta ) # second backward recursion - compute star terms for j in reversed(xrange(first_link, robo.NL)): replace_star_terms( symo, star_inertia, star_beta, j, star_inertia, star_beta, replace=True ) if j == 0: continue compute_tau(robo, symo, j, jaj, star_beta, tau) compute_star_terms( robo, symo, j, jaj, jTant, gamma, tau, h_inv, jah, star_inertia, star_beta ) if j == first_link: continue # compute base acceleration : this returns the correct value for # fixed base and floating base robots compute_base_accel( robo, symo, star_inertia, star_beta, grandVp ) # second forward recursion for j in xrange(1, robo.NL): # compute qddot_j : joint acceleration compute_joint_accel( robo, symo, j, jaj, jTant, h_inv, jah, gamma, tau, grandVp, star_beta, star_inertia, qddot ) # compute j^zeta_j : relative acceleration (6x1) compute_zeta(robo, symo, j, gamma, jaj, zeta, qddot) # compute j^Vdot_j : link acceleration compute_link_accel(robo, symo, j, jTant, zeta, grandVp) # compute j^F_j : reaction wrench compute_reaction_wrench( robo, symo, j, grandVp, star_inertia, star_beta, react_wrench )
def composite_inverse_dynmodel(robo, symo): """ Compute the Inverse Dynamic Model using Composite link Newton-Euler algorithm for tree structure robots with fixed and floating base. Parameters: robo: Robot - instance of robot description container symo: symbolmgr.SymbolManager - instance of symbol manager """ # antecedent angular velocity, projected into jth frame # j^omega_i wi = ParamsInit.init_vec(robo) # j^omega_j w = ParamsInit.init_w(robo) # j^a_j -- joint axis in screw form jaj = ParamsInit.init_vec(robo, 6) # Twist transform list of Matrices 6x6 grandJ = ParamsInit.init_mat(robo, 6) jTant = ParamsInit.init_mat(robo, 6) gamma = ParamsInit.init_vec(robo, 6) beta = ParamsInit.init_vec(robo, 6) zeta = ParamsInit.init_vec(robo, 6) composite_inertia = ParamsInit.init_mat(robo, 6) composite_beta = ParamsInit.init_vec(robo, 6) comp_inertia3, comp_ms, comp_mass = ParamsInit.init_jplus(robo) grandVp = ParamsInit.init_vec(robo, 6) react_wrench = ParamsInit.init_vec(robo, 6) torque = ParamsInit.init_scalar(robo) # init transformation antRj, antPj = compute_rot_trans(robo, symo) # first forward recursion for j in xrange(1, robo.NL): # compute spatial inertia matrix for use in backward recursion grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j]) # set jaj vector if robo.sigma[j] == 0: jaj[j] = Matrix([0, 0, 0, 0, 0, 1]) elif robo.sigma[j] == 1: jaj[j] = Matrix([0, 0, 1, 0, 0, 0]) # compute j^omega_j and j^omega_i compute_omega(robo, symo, j, antRj, w, wi) # compute j^S_i : screw transformation matrix compute_screw_transform(robo, symo, j, antRj, antPj, jTant) # first forward recursion (still) for j in xrange(1, robo.NL): # compute j^gamma_j : gyroscopic acceleration (6x1) compute_gamma(robo, symo, j, antRj, antPj, w, wi, gamma) # compute j^beta_j : external+coriolis+centrifugal wrench (6x1) compute_beta(robo, symo, j, w, beta) # compute j^zeta_j : relative acceleration (6x1) compute_zeta(robo, symo, j, gamma, jaj, zeta) # first backward recursion - initialisation step for j in reversed(xrange(0, robo.NL)): if j == 0: # compute spatial inertia matrix for base grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j]) # compute 0^beta_0 compute_beta(robo, symo, j, w, beta) replace_composite_terms( symo, grandJ, beta, j, composite_inertia, composite_beta ) # second backward recursion - compute composite term for j in reversed(xrange(0, robo.NL)): replace_composite_terms( symo, composite_inertia, composite_beta, j, composite_inertia, composite_beta, replace=True ) if j == 0: continue compute_composite_inertia( robo, symo, j, antRj, antPj, comp_inertia3, comp_ms, comp_mass, composite_inertia ) compute_composite_beta( robo, symo, j, jTant, zeta, composite_inertia, composite_beta ) # compute base acceleration : this returns the correct value for # fixed base and floating base robots compute_base_accel_composite( robo, symo, composite_inertia, composite_beta, grandVp ) # second forward recursion for j in xrange(1, robo.NL): # compute j^Vdot_j : link acceleration compute_link_accel(robo, symo, j, jTant, zeta, grandVp) # compute j^F_j : reaction wrench compute_reaction_wrench( robo, symo, j, grandVp, composite_inertia, composite_beta, react_wrench ) # second forward recursion still - to make the output pretty for j in xrange(1, robo.NL): # compute torque compute_torque(robo, symo, j, jaj, react_wrench, torque)
def direct_dynmodel(robo, symo): """ Compute the Direct Dynamic Model using Newton-Euler algorithm for robots with floating and fixed base. Parameters: robo: Robot - instance of robot description container symo: symbolmgr.SymbolManager - instance of symbol manager """ # antecedent angular velocity, projected into jth frame # j^omega_i wi = ParamsInit.init_vec(robo) # j^omega_j w = ParamsInit.init_w(robo) # j^a_j -- joint axis in screw form jaj = ParamsInit.init_vec(robo, 6) # Twist transform list of Matrices 6x6 grandJ = ParamsInit.init_mat(robo, 6) jTant = ParamsInit.init_mat(robo, 6) gamma = ParamsInit.init_vec(robo, 6) beta = ParamsInit.init_vec(robo, 6) zeta = ParamsInit.init_vec(robo, 6) h_inv = ParamsInit.init_scalar(robo) jah = ParamsInit.init_vec(robo, 6) # Jj*aj*Hinv_j tau = ParamsInit.init_scalar(robo) star_inertia = ParamsInit.init_mat(robo, 6) star_beta = ParamsInit.init_vec(robo, 6) qddot = ParamsInit.init_scalar(robo) grandVp = ParamsInit.init_vec(robo, 6) react_wrench = ParamsInit.init_vec(robo, 6) torque = ParamsInit.init_scalar(robo) # init transformation antRj, antPj = compute_rot_trans(robo, symo) # first forward recursion for j in xrange(1, robo.NL): # compute spatial inertia matrix for use in backward recursion grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j]) # set jaj vector if robo.sigma[j] == 0: jaj[j] = Matrix([0, 0, 0, 0, 0, 1]) elif robo.sigma[j] == 1: jaj[j] = Matrix([0, 0, 1, 0, 0, 0]) # compute j^omega_j and j^omega_i compute_omega(robo, symo, j, antRj, w, wi) # compute j^S_i : screw transformation matrix compute_screw_transform(robo, symo, j, antRj, antPj, jTant) # compute j^gamma_j : gyroscopic acceleration (6x1) compute_gamma(robo, symo, j, antRj, antPj, w, wi, gamma) # compute j^beta_j : external+coriolis+centrifugal wrench (6x1) compute_beta(robo, symo, j, w, beta) # decide first link first_link = 0 if robo.is_floating else 1 # first backward recursion - initialisation step for j in reversed(xrange(first_link, robo.NL)): if j == first_link and robo.is_floating: # compute spatial inertia matrix for base grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j]) # compute 0^beta_0 compute_beta(robo, symo, j, w, beta) replace_star_terms(symo, grandJ, beta, j, star_inertia, star_beta) # second backward recursion - compute star terms for j in reversed(xrange(first_link, robo.NL)): replace_star_terms(symo, star_inertia, star_beta, j, star_inertia, star_beta, replace=True) if j == 0: continue compute_tau(robo, symo, j, jaj, star_beta, tau) compute_star_terms(robo, symo, j, jaj, jTant, gamma, tau, h_inv, jah, star_inertia, star_beta) if j == first_link: continue # compute base acceleration : this returns the correct value for # fixed base and floating base robots compute_base_accel(robo, symo, star_inertia, star_beta, grandVp) # second forward recursion for j in xrange(1, robo.NL): # compute qddot_j : joint acceleration compute_joint_accel(robo, symo, j, jaj, jTant, h_inv, jah, gamma, tau, grandVp, star_beta, star_inertia, qddot) # compute j^zeta_j : relative acceleration (6x1) compute_zeta(robo, symo, j, gamma, jaj, zeta, qddot) # compute j^Vdot_j : link acceleration compute_link_accel(robo, symo, j, jTant, zeta, grandVp) # compute j^F_j : reaction wrench compute_reaction_wrench(robo, symo, j, grandVp, star_inertia, star_beta, react_wrench)
def composite_inverse_dynmodel(robo, symo): """ Compute the Inverse Dynamic Model using Composite link Newton-Euler algorithm for tree structure robots with fixed and floating base. Parameters: robo: Robot - instance of robot description container symo: symbolmgr.SymbolManager - instance of symbol manager """ # antecedent angular velocity, projected into jth frame # j^omega_i wi = ParamsInit.init_vec(robo) # j^omega_j w = ParamsInit.init_w(robo) # j^a_j -- joint axis in screw form jaj = ParamsInit.init_vec(robo, 6) # Twist transform list of Matrices 6x6 grandJ = ParamsInit.init_mat(robo, 6) jTant = ParamsInit.init_mat(robo, 6) gamma = ParamsInit.init_vec(robo, 6) beta = ParamsInit.init_vec(robo, 6) zeta = ParamsInit.init_vec(robo, 6) composite_inertia = ParamsInit.init_mat(robo, 6) composite_beta = ParamsInit.init_vec(robo, 6) comp_inertia3, comp_ms, comp_mass = ParamsInit.init_jplus(robo) grandVp = ParamsInit.init_vec(robo, 6) react_wrench = ParamsInit.init_vec(robo, 6) torque = ParamsInit.init_scalar(robo) # init transformation antRj, antPj = compute_rot_trans(robo, symo) # first forward recursion for j in xrange(1, robo.NL): # compute spatial inertia matrix for use in backward recursion grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j]) # set jaj vector if robo.sigma[j] == 0: jaj[j] = Matrix([0, 0, 0, 0, 0, 1]) elif robo.sigma[j] == 1: jaj[j] = Matrix([0, 0, 1, 0, 0, 0]) # compute j^omega_j and j^omega_i compute_omega(robo, symo, j, antRj, w, wi) # compute j^S_i : screw transformation matrix compute_screw_transform(robo, symo, j, antRj, antPj, jTant) # first forward recursion (still) for j in xrange(1, robo.NL): # compute j^gamma_j : gyroscopic acceleration (6x1) compute_gamma(robo, symo, j, antRj, antPj, w, wi, gamma) # compute j^beta_j : external+coriolis+centrifugal wrench (6x1) compute_beta(robo, symo, j, w, beta) # compute j^zeta_j : relative acceleration (6x1) compute_zeta(robo, symo, j, gamma, jaj, zeta) # first backward recursion - initialisation step for j in reversed(xrange(0, robo.NL)): if j == 0: # compute spatial inertia matrix for base grandJ[j] = inertia_spatial(robo.J[j], robo.MS[j], robo.M[j]) # compute 0^beta_0 compute_beta(robo, symo, j, w, beta) replace_composite_terms(symo, grandJ, beta, j, composite_inertia, composite_beta) # second backward recursion - compute composite term for j in reversed(xrange(0, robo.NL)): replace_composite_terms(symo, composite_inertia, composite_beta, j, composite_inertia, composite_beta, replace=True) if j == 0: continue compute_composite_inertia(robo, symo, j, antRj, antPj, comp_inertia3, comp_ms, comp_mass, composite_inertia) compute_composite_beta(robo, symo, j, jTant, zeta, composite_inertia, composite_beta) # compute base acceleration : this returns the correct value for # fixed base and floating base robots compute_base_accel_composite(robo, symo, composite_inertia, composite_beta, grandVp) # second forward recursion for j in xrange(1, robo.NL): # compute j^Vdot_j : link acceleration compute_link_accel(robo, symo, j, jTant, zeta, grandVp) # compute j^F_j : reaction wrench compute_reaction_wrench(robo, symo, j, grandVp, composite_inertia, composite_beta, react_wrench) # second forward recursion still - to make the output pretty for j in xrange(1, robo.NL): # compute torque compute_torque(robo, symo, j, jaj, react_wrench, torque)