def cart_pole(): """Generate Robot instance of classical CartPole dynamic system.""" # TODO: bring it to the new notation with 0-frame robo = Robot("CartPole", 2, 2, 2, False) robo.ant = (-1, 0, 1) robo.sigma = (0, 1, 0) robo.alpha = (0, pi / 2, pi / 2) robo.d = (0, 0, 0) robo.theta = (0, pi / 2, var("th2")) robo.r = (0, var("r1"), 0) robo.b = (0, 0, 0) robo.gamma = (0, 0, 0) robo.structure = tools.SIMPLE robo.num = range(0, 3) robo.Nex = [zeros(3, 1) for i in robo.num] robo.Fex = [zeros(3, 1) for i in robo.num] robo.FS = [0 for i in robo.num] robo.IA = [0 for i in robo.num] robo.FV = [var("FV{0}".format(i)) for i in robo.num] robo.MS = [zeros(3, 1) for i in robo.num] robo.MS[1][0] = var("MX2") robo.M = [var("M{0}".format(i)) for i in robo.num] robo.GAM = [var("GAM{0}".format(i)) for i in robo.num] inertia_matrix_terms = ("XX{0}, XY{0}, XZ{0}, ") + ("XY{0}, YY{0}, YZ{0}, ") + ("XZ{0}, YZ{0}, ZZ{0}") robo.J = [Matrix(3, 3, var(inertia_matrix_terms.format(i))) for i in robo.num] robo.G = Matrix([0, 0, -var("G3")]) robo.w0 = zeros(3, 1) robo.wdot0 = zeros(3, 1) robo.v0 = zeros(3, 1) robo.vdot0 = zeros(3, 1) robo.q = [0, var("r1"), var("th2")] robo.qdot = [0, var("r1d"), var("th2d")] robo.qddot = [0, var("r1dd"), var("th2dd")] return robo
def planar2r(): """Generate Robot instance of 2R Planar robot""" robo = Robot("Planar2R", 2, 2, 2, False) robo.structure = tools.SIMPLE robo.sigma = [2, 0, 0] robo.mu = [0, 1, 1] robo.gamma = [0, 0, 0] robo.b = [0, 0, 0] robo.alpha = [0, 0, 0] robo.d = [0, 0, var("L1")] robo.theta = [0, var("q1"), var("q2")] robo.r = [0, 0, 0] robo.num = range(0, 3) robo.Nex = [zeros(3, 1) for i in robo.num] robo.Fex = [zeros(3, 1) for i in robo.num] robo.FS = [0 for i in robo.num] robo.IA = [0 for i in robo.num] robo.FV = [var("FV{0}".format(i)) for i in robo.num] robo.MS = [Matrix(var("MX{0}, MY{0}, MZ{0}".format(i))) for i in robo.num] robo.M = [var("M{0}".format(i)) for i in robo.num] robo.GAM = [var("GAM{0}".format(i)) for i in robo.num] inertia_matrix_terms = ("XX{0}, XY{0}, XZ{0}, ") + ("XY{0}, YY{0}, YZ{0}, ") + ("XZ{0}, YZ{0}, ZZ{0}") robo.J = [Matrix(3, 3, var(inertia_matrix_terms.format(i))) for i in robo.num] robo.G = Matrix([0, 0, -var("G3")]) robo.w0 = zeros(3, 1) robo.wdot0 = zeros(3, 1) robo.v0 = zeros(3, 1) robo.vdot0 = zeros(3, 1) robo.q = [0, var("q1"), var("q2")] robo.qdot = [0, var("QP1"), var("QP2")] robo.qddot = [0, var("QDP1"), var("QDP2")] return robo
def rx90(): """Generate Robot instance of RX90""" robo = Robot("RX90", 6, 6, 6, False) # table of geometric parameters RX90 robo.sigma = [2, 0, 0, 0, 0, 0, 0] robo.alpha = [0, 0, pi / 2, 0, -pi / 2, pi / 2, -pi / 2] robo.d = [0, 0, 0, var("D3"), 0, 0, 0] robo.theta = [0] + list(var("th1:7")) robo.r = [0, 0, 0, 0, var("RL4"), 0, 0] robo.b = [0, 0, 0, 0, 0, 0, 0] robo.gamma = [0, 0, 0, 0, 0, 0, 0] robo.mu = [0, 1, 1, 1, 1, 1, 1] robo.structure = tools.SIMPLE robo.w0 = zeros(3, 1) robo.wdot0 = zeros(3, 1) robo.v0 = zeros(3, 1) robo.vdot0 = zeros(3, 1) num = range(0, 7) robo.qdot = [var("QP{0}".format(i)) for i in num] robo.qddot = [var("QDP{0}".format(i)) for i in num] robo.Nex = [zeros(3, 1) for i in num] robo.Nex[-1] = Matrix(var("CX{0}, CY{0}, CZ{0}".format(robo.NJ))) robo.Fex = [zeros(3, 1) for i in num] robo.Fex[-1] = Matrix(var("FX{0}, FY{0}, FZ{0}".format(robo.NJ))) robo.FS = [var("FS{0}".format(i)) for i in num] robo.IA = [var("IA{0}".format(i)) for i in num] robo.FV = [var("FV{0}".format(i)) for i in num] robo.MS = [Matrix(var("MX{0}, MY{0}, MZ{0}".format(i))) for i in num] robo.M = [var("M{0}".format(i)) for i in num] robo.GAM = [var("GAM{0}".format(i)) for i in num] inertia_matrix_terms = ("XX{0}, XY{0}, XZ{0}, ") + ("XY{0}, YY{0}, YZ{0}, ") + ("XZ{0}, YZ{0}, ZZ{0}") robo.J = [Matrix(3, 3, var(inertia_matrix_terms.format(i))) for i in num] robo.G = Matrix([0, 0, var("G3")]) return robo
def cart_pole(): """Generate Robot instance of classical CartPole dynamic system.""" #TODO: bring it to the new notation with 0-frame robo = Robot('CartPole', 2, 2, 2, False) robo.ant = (-1, 0, 1) robo.sigma = (0, 1, 0) robo.alpha = (0, pi / 2, pi / 2) robo.d = (0, 0, 0) robo.theta = (0, pi / 2, var('th2')) robo.r = (0, var('r1'), 0) robo.b = (0, 0, 0) robo.gamma = (0, 0, 0) robo.structure = tools.SIMPLE robo.num = range(0, 3) robo.Nex = [zeros(3, 1) for i in robo.num] robo.Fex = [zeros(3, 1) for i in robo.num] robo.FS = [0 for i in robo.num] robo.IA = [0 for i in robo.num] robo.FV = [var('FV{0}'.format(i)) for i in robo.num] robo.MS = [zeros(3, 1) for i in robo.num] robo.MS[1][0] = var('MX2') robo.M = [var('M{0}'.format(i)) for i in robo.num] robo.GAM = [var('GAM{0}'.format(i)) for i in robo.num] inertia_matrix_terms = ("XX{0}, XY{0}, XZ{0}, ") + \ ("XY{0}, YY{0}, YZ{0}, ") + \ ("XZ{0}, YZ{0}, ZZ{0}") robo.J = [ Matrix(3, 3, var(inertia_matrix_terms.format(i))) \ for i in robo.num ] robo.G = Matrix([0, 0, -var('G3')]) robo.w0 = zeros(3, 1) robo.wdot0 = zeros(3, 1) robo.v0 = zeros(3, 1) robo.vdot0 = zeros(3, 1) robo.q = [0, var('r1'), var('th2')] robo.qdot = [0, var('r1d'), var('th2d')] robo.qddot = [0, var('r1dd'), var('th2dd')] return robo
def rx90(): """Generate Robot instance of RX90""" robo = Robot('RX90', 6, 6, 6, False) # table of geometric parameters RX90 robo.sigma = [2, 0, 0, 0, 0, 0, 0] robo.alpha = [0, 0, pi / 2, 0, -pi / 2, pi / 2, -pi / 2] robo.d = [0, 0, 0, var('D3'), 0, 0, 0] robo.theta = [0] + list(var('th1:7')) robo.r = [0, 0, 0, 0, var('RL4'), 0, 0] robo.b = [0, 0, 0, 0, 0, 0, 0] robo.gamma = [0, 0, 0, 0, 0, 0, 0] robo.mu = [0, 1, 1, 1, 1, 1, 1] robo.structure = tools.SIMPLE robo.w0 = zeros(3, 1) robo.wdot0 = zeros(3, 1) robo.v0 = zeros(3, 1) robo.vdot0 = zeros(3, 1) num = range(0, 7) robo.qdot = [var('QP{0}'.format(i)) for i in num] robo.qddot = [var('QDP{0}'.format(i)) for i in num] robo.Nex = [zeros(3, 1) for i in num] robo.Nex[-1] = Matrix(var('CX{0}, CY{0}, CZ{0}'.format(robo.NJ))) robo.Fex = [zeros(3, 1) for i in num] robo.Fex[-1] = Matrix(var('FX{0}, FY{0}, FZ{0}'.format(robo.NJ))) robo.FS = [var('FS{0}'.format(i)) for i in num] robo.IA = [var('IA{0}'.format(i)) for i in num] robo.FV = [var('FV{0}'.format(i)) for i in num] robo.MS = [Matrix(var('MX{0}, MY{0}, MZ{0}'.format(i))) for i in num] robo.M = [var('M{0}'.format(i)) for i in num] robo.GAM = [var('GAM{0}'.format(i)) for i in num] inertia_matrix_terms = ("XX{0}, XY{0}, XZ{0}, ") + \ ("XY{0}, YY{0}, YZ{0}, ") + \ ("XZ{0}, YZ{0}, ZZ{0}") robo.J = [ Matrix(3, 3, var(inertia_matrix_terms.format(i))) \ for i in num ] robo.G = Matrix([0, 0, var('G3')]) return robo
def cart_pole(): """Generate Robot instance of classical CartPole dynamic system.""" #TODO: bring it to the new notation with 0-frame robo = Robot() robo.name = 'CartPole' robo.ant = (-1, 0) robo.sigma = (1, 0) robo.alpha = (pi/2, pi/2) robo.d = (0, 0) robo.theta = (pi/2, var('Th2')) robo.r = (var('R1'), 0) robo.b = (0, 0) robo.gamma = (0, 0) robo.num = range(1, 3) robo.NJ = 2 robo.NL = 2 robo.NF = 2 robo.Nex = [zeros(3, 1) for i in robo.num] robo.Fex = [zeros(3, 1) for i in robo.num] robo.FS = [0 for i in robo.num] robo.IA = [0 for i in robo.num] robo.FV = [var('FV{0}'.format(i)) for i in robo.num] robo.MS = [zeros(3, 1) for i in robo.num] robo.MS[1][0] = var('MX2') robo.M = [var('M{0}'.format(i)) for i in robo.num] robo.GAM = [var('GAM{0}'.format(i)) for i in robo.num] robo.J = [zeros(3) for i in robo.num] robo.J[1][2, 2] = var('ZZ2') robo.G = Matrix([0, 0, -var('G3')]) robo.w0 = zeros(3, 1) robo.wdot0 = zeros(3, 1) robo.v0 = zeros(3, 1) robo.vdot0 = zeros(3, 1) robo.q = var('R1, Th2') robo.qdot = var('R1d, Th2d') robo.qddot = var('R1dd, Th2dd') robo.num.append(0) return robo
def cart_pole(): """Generate Robot instance of classical CartPole dynamic system.""" #TODO: bring it to the new notation with 0-frame robo = Robot() robo.name = 'CartPole' robo.ant = (-1, 0) robo.sigma = (1, 0) robo.alpha = (pi / 2, pi / 2) robo.d = (0, 0) robo.theta = (pi / 2, var('Th2')) robo.r = (var('R1'), 0) robo.b = (0, 0) robo.gamma = (0, 0) robo.num = range(1, 3) robo.NJ = 2 robo.NL = 2 robo.NF = 2 robo.Nex = [zeros(3, 1) for i in robo.num] robo.Fex = [zeros(3, 1) for i in robo.num] robo.FS = [0 for i in robo.num] robo.IA = [0 for i in robo.num] robo.FV = [var('FV{0}'.format(i)) for i in robo.num] robo.MS = [zeros(3, 1) for i in robo.num] robo.MS[1][0] = var('MX2') robo.M = [var('M{0}'.format(i)) for i in robo.num] robo.GAM = [var('GAM{0}'.format(i)) for i in robo.num] robo.J = [zeros(3) for i in robo.num] robo.J[1][2, 2] = var('ZZ2') robo.G = Matrix([0, 0, -var('G3')]) robo.w0 = zeros(3, 1) robo.wdot0 = zeros(3, 1) robo.v0 = zeros(3, 1) robo.vdot0 = zeros(3, 1) robo.q = var('R1, Th2') robo.qdot = var('R1d, Th2d') robo.qddot = var('R1dd, Th2dd') robo.num.append(0) return robo
def planar2r(): """Generate Robot instance of 2R Planar robot""" robo = Robot('Planar2R', 2, 2, 2, False) robo.structure = tools.SIMPLE robo.sigma = [2, 0, 0] robo.mu = [0, 1, 1] robo.gamma = [0, 0, 0] robo.b = [0, 0, 0] robo.alpha = [0, 0, 0] robo.d = [0, 0, var('L1')] robo.theta = [0, var('q1'), var('q2')] robo.r = [0, 0, 0] robo.num = range(0, 3) robo.Nex = [zeros(3, 1) for i in robo.num] robo.Fex = [zeros(3, 1) for i in robo.num] robo.FS = [0 for i in robo.num] robo.IA = [0 for i in robo.num] robo.FV = [var('FV{0}'.format(i)) for i in robo.num] robo.MS = [Matrix(var('MX{0}, MY{0}, MZ{0}'.format(i))) for i in robo.num] robo.M = [var('M{0}'.format(i)) for i in robo.num] robo.GAM = [var('GAM{0}'.format(i)) for i in robo.num] inertia_matrix_terms = ("XX{0}, XY{0}, XZ{0}, ") + \ ("XY{0}, YY{0}, YZ{0}, ") + \ ("XZ{0}, YZ{0}, ZZ{0}") robo.J = [ Matrix(3, 3, var(inertia_matrix_terms.format(i))) \ for i in robo.num ] robo.G = Matrix([0, 0, -var('G3')]) robo.w0 = zeros(3, 1) robo.wdot0 = zeros(3, 1) robo.v0 = zeros(3, 1) robo.vdot0 = zeros(3, 1) robo.q = [0, var('q1'), var('q2')] robo.qdot = [0, var('QP1'), var('QP2')] robo.qddot = [0, var('QDP1'), var('QDP2')] return robo