Example #1
0
    def from_config(
        cls,
        config: Config,
        unused_metadata=None,
        model_state=None,
        tensorizers=None,
        rank=0,
        world_size=1,
    ):
        print(f"Creating task: {cls.__name__}...")
        tensorizers, data = cls._init_tensorizers(config, tensorizers, rank,
                                                  world_size)

        # Initialized tensorizers can be used to create the model
        model = cls._init_model(config.model, tensorizers, model_state)

        # This is the only place right now that the task actually cares about which
        # features and tensors are being used. This is a strong tie between
        # the implementation of the model and the metric reporter.
        metric_reporter = cls.create_metric_reporter(config, tensorizers)
        if hasattr(config, "use_elastic") and config.use_elastic:
            trainer = create_trainer(ElasticTrainer.Config(config.trainer),
                                     model)
        else:
            trainer = create_trainer(config.trainer, model)
        return cls(data, model, metric_reporter, trainer)
Example #2
0
 def from_config(cls,
                 config: Config,
                 unused_metadata=None,
                 model_state=None):
     tensorizers = {
         name: create_component(ComponentType.TENSORIZER, tensorizer)
         for name, tensorizer in config.model.inputs._asdict().items()
     }
     # This initializes the tensorizers
     data = create_component(ComponentType.DATA_HANDLER, config.data,
                             cls.DATA_SCHEMA, tensorizers)
     # Initialized tensorizers can be used to create the model
     model = create_component(ComponentType.MODEL, config.model,
                              tensorizers)
     if model_state:
         model.load_state_dict(model_state)
     if cuda.CUDA_ENABLED:
         model = model.cuda()
     # This is the only place right now that the task actually cares about which
     # features and tensors are being used. This is a strong tie between
     # the implementation of the model and the metric reporter.
     metric_reporter = cls.create_metric_reporter(config, tensorizers)
     trainer = create_trainer(config.trainer, model)
     if config.exporter:
         exporter = create_component(ComponentType.EXPORTER,
                                     config.exporter)
     else:
         exporter = None
     return cls(data, model, metric_reporter, trainer, exporter)
Example #3
0
    def from_config(cls, task_config, metadata=None, model_state=None):
        """
        Create the task from config, and optionally load metadata/model_state
        This function will create components including :class:`~DataHandler`,
        :class:`~Trainer`, :class:`~Optimizer`, :class:`~Scheduler`,
        :class:`~MetricReporter`, :class:`~Exporter`, and wire them up.

        Args:
            task_config (Task.Config): the config of the current task
            metadata: saved global context of this task, e.g: vocabulary, will be
                generated by :class:`~DataHandler` if it's None
            model_state: saved model parameters, will be loaded into model when given
        """
        print("Task parameters:\n")
        pprint(config_to_json(type(task_config), task_config))
        featurizer = create_featurizer(task_config.featurizer, task_config.features)
        # load data
        data_handler = create_data_handler(
            task_config.data_handler,
            task_config.features,
            task_config.labels,
            featurizer=featurizer,
        )
        print("\nLoading data...")
        if metadata:
            data_handler.load_metadata(metadata)
        else:
            data_handler.init_metadata()

        metadata = data_handler.metadata

        model = create_model(task_config.model, task_config.features, metadata)
        if model_state:
            model.load_state_dict(model_state)
        if cuda_utils.CUDA_ENABLED:
            model = model.cuda()
        metric_reporter = create_metric_reporter(task_config.metric_reporter, metadata)
        optimizer = create_optimizer(task_config.optimizer, model)
        exporter = (
            create_exporter(
                task_config.exporter,
                task_config.features,
                task_config.labels,
                data_handler.metadata,
                task_config.model,
            )
            if task_config.exporter
            else None
        )
        return cls(
            trainer=create_trainer(task_config.trainer),
            data_handler=data_handler,
            model=model,
            metric_reporter=metric_reporter,
            optimizer=optimizer,
            lr_scheduler=Scheduler(
                optimizer, task_config.scheduler, metric_reporter.lower_is_better
            ),
            exporter=exporter,
        )
Example #4
0
    def from_config(cls, task_config, metadata=None, model_state=None):
        """
        Create the task from config, and optionally load metadata/model_state
        This function will create components including :class:`~DataHandler`,
        :class:`~Trainer`, :class:`~MetricReporter`,
        :class:`~Exporter`, and wire them up.

        Args:
            task_config (Task.Config): the config of the current task
            metadata: saved global context of this task, e.g: vocabulary, will be
                generated by :class:`~DataHandler` if it's None
            model_state: saved model parameters, will be loaded into model when given
        """
        if hasattr(task_config.labels, "target_prob"):
            assert task_config.labels.target_prob == isinstance(
                task_config.model.output_layer.loss,
                (
                    KLDivergenceBCELoss.Config,
                    KLDivergenceCELoss.Config,
                    SoftHardBCELoss.Config,
                ),
            ), "target_prob must be set to True for KD losses"
        featurizer = create_featurizer(task_config.featurizer,
                                       task_config.features)
        # load data
        data_handler = create_data_handler(
            task_config.data_handler,
            task_config.features,
            task_config.labels,
            featurizer=featurizer,
        )
        print("\nLoading data...")
        if metadata:
            data_handler.load_metadata(metadata)
        else:
            data_handler.init_metadata()

        metadata = data_handler.metadata

        model = create_model(task_config.model, task_config.features, metadata)
        if model_state:
            model.load_state_dict(model_state)
        if cuda.CUDA_ENABLED:
            model = model.cuda()
        metric_reporter = create_metric_reporter(task_config.metric_reporter,
                                                 metadata)
        exporter = (create_exporter(
            task_config.exporter,
            task_config.features,
            task_config.labels,
            data_handler.metadata,
            task_config.model,
        ) if task_config.exporter else None)
        return cls(
            trainer=create_trainer(task_config.trainer, model),
            data_handler=data_handler,
            model=model,
            metric_reporter=metric_reporter,
            exporter=exporter,
        )
Example #5
0
    def from_config(cls, config: Config, unused_metadata=None, model_state=None):
        tensorizers = {
            name: create_component(ComponentType.TENSORIZER, tensorizer)
            for name, tensorizer in config.model.inputs._asdict().items()
        }
        schema: Dict[str, Type] = {}
        for tensorizer in tensorizers.values():
            for name, type in tensorizer.column_schema:
                if name in schema and type != schema[name]:
                    raise TypeError(f"Expected two different types for column {name}")
                schema[name] = type

        # This initializes the tensorizers
        data = create_component(
            ComponentType.DATA_HANDLER, config.data, schema, tensorizers
        )
        # Initialized tensorizers can be used to create the model
        model = create_component(ComponentType.MODEL, config.model, tensorizers)
        if model_state:
            model.load_state_dict(model_state)

        precision.activate(model)
        if cuda.CUDA_ENABLED:
            model = model.cuda()
        # This is the only place right now that the task actually cares about which
        # features and tensors are being used. This is a strong tie between
        # the implementation of the model and the metric reporter.
        metric_reporter = create_component(
            ComponentType.METRIC_REPORTER,
            config.metric_reporter,
            tensorizers=tensorizers,
        )
        trainer = create_trainer(config.trainer, model)
        return cls(data, model, metric_reporter, trainer)
Example #6
0
    def from_config(cls, task_config, metadata=None, model_state=None):
        datas = OrderedDict()
        models = OrderedDict()
        metric_reporters = OrderedDict()
        for name, task in task_config.tasks.items():
            tensorizers, data = NewTask._init_tensorizers(task)
            datas[name] = data
            models[name] = NewTask._init_model(task, tensorizers)
            metric_reporters[name] = create_component(
                ComponentType.METRIC_REPORTER,
                task.metric_reporter,
                tensorizers=tensorizers,
            )

        task_weights = {
            task_name: task_config.task_weights.get(task_name, 1.0)
            for task_name in task_config.tasks.keys()
        }
        data = DisjointMultitaskData(task_config.data, datas)
        model = NewDisjointMultitaskModel(models, loss_weights=task_weights)
        if model_state:
            model.load_state_dict(model_state)
        metric_reporter = DisjointMultitaskMetricReporter(
            metric_reporters,
            loss_weights=task_weights,
            target_task_name=task_config.target_task_name,
            use_subtask_select_metric=(
                task_config.metric_reporter.use_subtask_select_metric
            ),
        )
        trainer = create_trainer(task_config.trainer, model)

        return cls(data, model, metric_reporter, trainer)
Example #7
0
    def from_config(cls, config: Config, model: torch.nn.Module, *args,
                    **kwargs):
        trainers = [
            create_trainer(config.real_trainer, m, *args, **kwargs)
            for m in model.models
        ]

        return cls(trainers)
Example #8
0
    def from_config(cls, task_config, metadata=None, model_state=None):
        print("Task parameters:\n")
        pprint(config_to_json(type(task_config), task_config))

        data_handlers = OrderedDict()
        exporters = OrderedDict()
        for name, task in task_config.tasks.items():
            featurizer = create_featurizer(task.featurizer, task.features)
            data_handlers[name] = create_data_handler(task.data_handler,
                                                      task.features,
                                                      task.labels,
                                                      featurizer=featurizer)
        data_handler = DisjointMultitaskDataHandler(task_config.data_handler,
                                                    data_handlers)
        print("\nLoading data...")
        if metadata:
            data_handler.load_metadata(metadata)
        else:
            data_handler.init_metadata()
        metadata = data_handler.metadata
        exporters = {
            name: (create_exporter(
                task.exporter,
                task.features,
                task.labels,
                data_handler.data_handlers[name].metadata,
                task.model,
            ) if task.exporter else None)
            for name, task in task_config.tasks.items()
        }
        metric_reporter = DisjointMultitaskMetricReporter(
            OrderedDict(
                (name,
                 create_metric_reporter(task.metric_reporter, metadata[name]))
                for name, task in task_config.tasks.items()),
            target_task_name=task_config.metric_reporter.target_task_name,
        )

        model = DisjointMultitaskModel(
            OrderedDict(
                (name, create_model(task.model, task.features, metadata[name]))
                for name, task in task_config.tasks.items()))
        if model_state:
            model.load_state_dict(model_state)
        if cuda_utils.CUDA_ENABLED:
            model = model.cuda()

        optimizers = create_optimizer(model, task_config.optimizer)
        return cls(
            exporters=exporters,
            trainer=create_trainer(task_config.trainer),
            data_handler=data_handler,
            model=model,
            metric_reporter=metric_reporter,
            optimizers=optimizers,
            lr_scheduler=Scheduler(optimizers, task_config.scheduler,
                                   metric_reporter.lower_is_better),
        )
Example #9
0
    def from_config(
        cls,
        task_config: Config,
        unused_metadata=None,
        model_state=None,
        tensorizers=None,
        rank=0,
        world_size=1,
    ):
        data_dict = OrderedDict()
        models = OrderedDict()
        metric_reporters = OrderedDict()
        tensorizers_dict = tensorizers or {}
        # We can't really re-use the tensorizers, and the tensorizers saved for disjoint
        # multitask are an empty dict right now anyway. Really we should serialize
        # all of the subtasks individually.
        for name, task in task_config.tasks.items():
            tensorizers, data = cls._init_tensorizers(
                task, tensorizers_dict.get(name), rank, world_size
            )
            data_dict[name] = data
            models[name] = NewTask._init_model(task.model, tensorizers)
            metric_reporters[name] = create_component(
                ComponentType.METRIC_REPORTER,
                task.metric_reporter,
                tensorizers=tensorizers,
            )

        task_weights = {
            task_name: task_config.task_weights.get(task_name, 1.0)
            for task_name in task_config.tasks.keys()
        }
        data = DisjointMultitaskData.from_config(
            task_config.data, data_dict=data_dict, rank=rank, world_size=world_size
        )
        # for serialization
        data.tensorizers = {
            name: data.data_dict[name].tensorizers for name in data.data_dict
        }
        model = NewDisjointMultitaskModel(models, loss_weights=task_weights)
        if model_state:
            model.load_state_dict(model_state)
        metric_reporter = DisjointMultitaskMetricReporter(
            metric_reporters,
            loss_weights=task_weights,
            target_task_name=task_config.target_task_name,
            use_subtask_select_metric=(
                task_config.metric_reporter.use_subtask_select_metric
            ),
        )
        trainer = create_trainer(task_config.trainer, model)

        return cls(data, model, metric_reporter, trainer)
Example #10
0
 def from_config(
     cls,
     config: Config,
     unused_metadata=None,
     model_state=None,
     tensorizers=None,
     rank=0,
     world_size=1,
 ):
     tensorizers, data = cls._init_tensorizers(config, tensorizers, rank, world_size)
     model = cls._init_model(config.model, tensorizers, model_state)
     metric_reporter = cls.create_metric_reporter(config, tensorizers)
     trainer = create_trainer(config.trainer, model)
     return cls(data, model, metric_reporter, trainer, config.trace_both_encoders)
Example #11
0
    def from_config(cls, config: Config, unused_metadata=None, model_state=None):
        tensorizers, data = NewTask._init_tensorizers(config)

        # Initialized tensorizers can be used to create the model
        model = NewTask._init_model(config, tensorizers, model_state)

        # This is the only place right now that the task actually cares about which
        # features and tensors are being used. This is a strong tie between
        # the implementation of the model and the metric reporter.
        metric_reporter = create_component(
            ComponentType.METRIC_REPORTER,
            config.metric_reporter,
            tensorizers=tensorizers,
        )
        trainer = create_trainer(config.trainer, model)
        return cls(data, model, metric_reporter, trainer)
Example #12
0
    def from_config(cls, task_config, metadata=None, model_state=None):
        print("(mldc/task/gpt_task.py def from_config) Task parameters:\n")
        pprint(config_to_json(type(task_config), task_config))

        featurizer = create_featurizer(
            task_config.featurizer,
            task_config.features,
            text_embedder_config=task_config.text_embedder
        )  # featurizer :: text embedder GPT2Embed

        # load data
        data_handler = create_data_handler(
            task_config.data_handler,
            task_config.features,
            task_config.labels,
            text_embedder_config=task_config.text_embedder,
            featurizer=featurizer,
        )
        print(
            "\n(mldc/task/retrieval.py GptTask def from_config) Loading data..."
        )
        if metadata:
            data_handler.load_metadata(metadata)
        else:
            data_handler.init_metadata()

        metadata = data_handler.metadata
        task_config.features.seq_word_feat.embed_dim = data_handler.text_embedder.embed_dim

        print("create model!")
        model = create_model(task_config.model, task_config.features, metadata)
        if model_state:
            model.load_state_dict(model_state)
        if cuda_utils.CUDA_ENABLED:
            model = model.cuda()
        metric_reporter = create_metric_reporter(
            task_config.metric_reporter,
            metadata,
            text_embedder=task_config.text_embedder)

        return cls(
            trainer=create_trainer(task_config.trainer),
            data_handler=data_handler,
            model=model,
            metric_reporter=metric_reporter,
            model_needs_meta_training=task_config.model_needs_meta_training,
        )
Example #13
0
    def from_config(
        cls,
        task_config: Config,
        metadata=None,
        model_state=None,
        tensorizers=None,
        rank=0,
        world_size=1,
    ):
        print("Task parameters:\n")
        pprint(config_to_json(type(task_config), task_config))

        data_handlers = OrderedDict()
        exporters = OrderedDict()
        for name, task in task_config.tasks.items():
            featurizer = create_featurizer(task.featurizer, task.features)
            data_handlers[name] = create_data_handler(
                task.data_handler, task.features, task.labels, featurizer=featurizer
            )
        data_handler = DisjointMultitaskDataHandler(
            task_config.data_handler,
            data_handlers,
            target_task_name=task_config.target_task_name,
        )
        print("\nLoading data...")
        if metadata:
            data_handler.load_metadata(metadata)
        else:
            data_handler.init_metadata()

        metadata = data_handler.metadata
        exporters = {
            name: (
                create_exporter(
                    task.exporter,
                    task.features,
                    task.labels,
                    data_handler.data_handlers[name].metadata,
                    task.model,
                )
                if task.exporter
                else None
            )
            for name, task in task_config.tasks.items()
        }
        task_weights = {
            task_name: task_config.task_weights.get(task_name, 1)
            for task_name in task_config.tasks.keys()
        }
        metric_reporter = DisjointMultitaskMetricReporter(
            OrderedDict(
                (name, create_metric_reporter(task.metric_reporter, metadata[name]))
                for name, task in task_config.tasks.items()
            ),
            loss_weights=task_weights,
            target_task_name=task_config.target_task_name,
            use_subtask_select_metric=(
                task_config.metric_reporter.use_subtask_select_metric
            ),
        )
        model = DisjointMultitaskModel(
            OrderedDict(
                (name, create_model(task.model, task.features, metadata[name]))
                for name, task in task_config.tasks.items()
            ),
            loss_weights=task_weights,
        )
        if model_state:
            model.load_state_dict(model_state)
        if cuda.CUDA_ENABLED:
            model = model.cuda()

        return cls(
            target_task_name=task_config.target_task_name,
            exporters=exporters,
            trainer=create_trainer(task_config.trainer, model),
            data_handler=data_handler,
            model=model,
            metric_reporter=metric_reporter,
        )
Example #14
0
 def from_config(cls, config: Config, model: torch.nn.Module, *args,
                 **kwargs):
     return cls(create_trainer(config.real_trainer, model, *args, **kwargs))
Example #15
0
 def from_config(cls, config: Config, *args, **kwargs):
     return cls(create_trainer(config.real_trainer, *args, **kwargs))