def setUp(self):
     handler_config = DocClassificationDataHandler.Config()
     handler_config.columns_to_read.append(ModelInput.DENSE_FEAT)
     self.data_handler = DocClassificationDataHandler.from_config(
         DocClassificationDataHandler.Config(),
         ModelInputConfig(),
         [],
         featurizer=SimpleFeaturizer.from_config(SimpleFeaturizer.Config(),
                                                 FeatureConfig()),
     )
Example #2
0
 class Config(Task.Config):
     model: DocModel.Config = DocModel.Config()
     trainer: Trainer.Config = Trainer.Config()
     features: DocClassification.ModelInputConfig = (
         DocClassification.ModelInputConfig())
     labels: DocClassification.TargetConfig = DocClassification.TargetConfig(
     )
     data_handler: DocClassificationDataHandler.Config = (
         DocClassificationDataHandler.Config())
     metric_reporter: ClassificationMetricReporter.Config = (
         ClassificationMetricReporter.Config())
Example #3
0
 class Config(Task_Deprecated.Config):
     model: DocModel_Deprecated.Config = DocModel_Deprecated.Config()
     trainer: Trainer.Config = Trainer.Config()
     features: DocClassification.ModelInputConfig = (
         DocClassification.ModelInputConfig())
     labels: DocClassification.TargetConfig = DocClassification.TargetConfig(
     )
     data_handler: DocClassificationDataHandler.Config = (
         DocClassificationDataHandler.Config())
     metric_reporter: ClassificationMetricReporter.Config = (
         ClassificationMetricReporter.Config())
     exporter: Optional[DenseFeatureExporter.Config] = None
 def setUp(self):
     file_name = tests_module.test_file(
         "knowledge_distillation_test_tiny.tsv")
     label_config_dict = {"target_prob": True}
     data_handler_dict = {
         "columns_to_read": [
             "text",
             "target_probs",
             "target_logits",
             "target_labels",
             "doc_label",
         ]
     }
     self.data_handler = DocClassificationDataHandler.from_config(
         DocClassificationDataHandler.Config(**data_handler_dict),
         ModelInputConfig(),
         TargetConfig(**label_config_dict),
         featurizer=SimpleFeaturizer.from_config(SimpleFeaturizer.Config(),
                                                 FeatureConfig()),
     )
     self.data = list(
         self.data_handler.read_from_file(file_name,
                                          self.data_handler.raw_columns))