Example #1
0
    def _add_extra_args_for_dataloader(self, dataset, opts, other_args={}):
        training_parameters = self._global_config.training_parameters
        dataset_type = self._dataset_type

        other_args["shuffle"] = False
        if dataset_type != "test":
            other_args["shuffle"] = True

        if (training_parameters.local_rank is not None
                and training_parameters.distributed):
            other_args["sampler"] = DistributedSampler(
                dataset, shuffle=other_args["shuffle"])
            # Shuffle is mutually exclusive with sampler, let DistributedSampler take care of
            # shuffle and pop from main args
            other_args.pop("shuffle")

        other_args["batch_size"] = get_batch_size()

        return other_args
Example #2
0
 def __len__(self):
     # Since, this is iterator, we need to return total length == number of batches
     return self._total_length // get_batch_size()