Example #1
0
def find_principal_securities(marketcode, event_filename, date_range, T,
                              filename):
    event_data = np.loadtxt('csv/' + event_filename + '.csv',
                            dtype=np.unicode,
                            delimiter=',')[1:, :]
    date_from = datetime.strptime(date_range[0], base.DATE_FORMAT)
    date_to = datetime.strptime(date_range[1], base.DATE_FORMAT)
    event_date_list = []
    for event in event_data:
        date = datetime.strptime(event[1], base.DATE_FORMAT)
        if date_from <= date <= date_to:
            event_date_list.append(date.date())

    offset = 0
    num_clusters = 4
    event_security_cluster = []

    change_generator, security_list = base.observed_changes(marketcode,
                                                            date_range,
                                                            always=True,
                                                            T=T)

    event_idx = 0
    event_date = event_date_list[event_idx]
    last_data_change = np.array([])
    for data_change, date in change_generator:
        if date > event_date:
            traded_securities_ids = ~np.all(last_data_change == 0, axis=0)
            effective_change = last_data_change[:, traded_securities_ids]
            traded_securities = security_list[traded_securities_ids]
            corr = pearson_correlation(effective_change, offset)
            cluster_idx = cluster_data(corr, num_clusters=num_clusters)

            security_clusters = np.empty(len(security_list)) * np.nan
            for i in range(num_clusters):
                security_clusters[np.in1d(
                    security_list[:, 0], traded_securities[cluster_idx == i,
                                                           0])] = i
            event_security_cluster.append(security_clusters)
            event_idx = event_idx + 1
            if event_idx >= len(event_date_list):
                break
            event_date = event_date_list[event_idx]
        last_data_change = data_change
    event_security_cluster = np.array(event_security_cluster)

    header = ['ISIN', 'issuer']
    data_csv = np.array([header])
    for row in security_list[np.all(event_security_cluster == 0, axis=0)]:
        data_csv = np.append(data_csv, [row], axis=0)
    np.savetxt('csv/' + filename + '.csv', data_csv, fmt='%s', delimiter=',')
Example #2
0
def market_stress_matrix(marketcode, date, T, filename):
    num_clusters = 4
    change_generator, security_list = base.observed_changes(marketcode, (date,date), T=T)
    change_data, date = next(change_generator)
    corr = pearson_correlation(change_data)
    order_metric = np.average(corr, axis=0)
    cluster_idx = cluster_data(corr, num_clusters=num_clusters)
    data_sorted_idx = np.lexsort([np.negative(order_metric), cluster_idx])
    corr = corr[data_sorted_idx,:][:,data_sorted_idx]
    security_list = security_list[data_sorted_idx]

    header = ['isin'] + [security[0] for security in security_list]
    data_csv = np.array([header])
    for security_idx, security in enumerate(security_list):
        data_csv = np.append(data_csv, np.concatenate(([[security[0]]], [corr[security_idx]]), axis=1), axis=0)
    np.savetxt('csv/'+filename+'.csv', data_csv, fmt='%s', delimiter=',')
Example #3
0
param_fit_normal, param_error_normal = base.plot_baseline_stress(
    baseline_stress_file)

######

market_code = 'SWX'
series_length = 20
event_filename = 'market_stress_events'

date_range = ('01.01.2000', '31.12.2018')
stress_series_file = 'stress_series_{}_{}_{}-{}'.format(
    market_code, series_length, base.datestamp(date_range[0]),
    base.datestamp(date_range[1]))
if recalculate:
    change_generator, security_list = base.observed_changes(market_code,
                                                            date_range,
                                                            always=False,
                                                            T=series_length)
    code.stress_series(change_generator, offset=0, filename=stress_series_file)
else:
    security_list = [None] * 314
base.plot_time_series({'T=20': stress_series_file},
                      event_filename=event_filename)

data_range_zoom = ('01.01.2016', '31.12.2016')
stress_series_zoom_file = 'stress_series_{}_{}_{}-{}'.format(
    market_code, series_length, base.datestamp(data_range_zoom[0]),
    base.datestamp(data_range_zoom[1]))
if recalculate:
    change_generator, _ = base.observed_changes(market_code,
                                                data_range_zoom,
                                                always=False,