def viscoElasticUpdater_bgvel(t, y, wdict): #interior function for incompressible background flow only #split up long vector into individual sections (force pts, Lagrangian pts, stress components) pdict = wdict['pdict'] N = pdict['N'] M = pdict['M'] l2 = np.reshape(y[range(2 * N * M)], (N * M, 2)) l3 = np.reshape(l2, (N, M, 2)) P2 = np.reshape(y[(2 * N * M):], (N * M, 2, 2)) P3 = np.reshape(P2, (N, M, 2, 2)) #calculate tensor derivative Pd = pdict['beta'] * SD2D.tensorDiv(P3, pdict['gridspc'], N, M) Pd = np.reshape(Pd, (N * M, 2)) #calculate deformation matrix and its inverse F = SD2D.vectorGrad(l3, pdict['gridspc'], N, M) F = np.reshape(F, (N * M, 2, 2)) #calculate new velocities at all points of interest ub, gradub = wdict['myVelocity'](pdict, l2) lt0 = pdict['gridspc']**2 * CM.matmult(pdict['eps_grid'], pdict['mu'], l2, l2, Pd) # reshape the velocities on the grid lt3 = np.reshape(lt0, (N, M, 2)) lt = ub + lt0 # calculate new stress time derivatives gradlt = SD2D.vectorGrad(lt3, pdict['gridspc'], N, M) gradlt = np.reshape(gradlt, (N * M, 2, 2)) Pt = CM.stressDeriv(pdict['Wi'], gradub, gradlt, F, P2) # gradlt = pdict['gridspc']**2*CM.derivop(pdict['eps_grid'],pdict['mu'],l2,l2,Pd,F) #grad(Stokeslet) method # Finv = CM.matinv2x2(F) #first grad(u) method # Pt = np.zeros((N*M,2,2)) #first grad(u) method # for j in range(N*M): # Pt[j,:,:] = np.dot(gradub[j,:,:],P2[j,:,:]) + np.dot(np.dot(gradlt[j,:,:],Finv[j,:,:]),P2[j,:,:]) - (1./pdict['Wi'])*(P2[j,:,:] - Finv[j,:,:].transpose()) return np.append(lt, Pt.flatten())
def veExtensionUpdater(t, y, pdict): #interior function for incompressible background flow only #split up long vector into individual sections (force pts, Lagrangian pts, stress components) N = pdict['N'] M = pdict['M'] l = y[range(2 * N * M)] l2col = np.reshape(l, (N * M, 2)) l3D = np.reshape(l, (N, M, 2)) P = np.reshape(y[(2 * N * M):], (N, M, 2, 2)) Ps = np.reshape(P, (N * M, 2, 2)) #calculate tensor derivative Pd = pdict['beta'] * SD2D.tensorDiv(P, pdict['gridspc'], N, M) Pd = np.reshape(Pd, (N * M, 2)) #calculate deformation matrix and its inverse F = SD2D.vectorGrad(l3D, pdict['gridspc'], N, M) F = np.reshape(F, (N * M, 2, 2)) Finv = CM.matinv2x2(F) #calculate new velocities at all points of interest (Lagrangian points and force points) ub, gradub = pdict['myVelocity'](pdict, l, l2col) lt = ub + pdict['gridspc']**2 * CM.matmult(pdict['eps'], pdict['mu'], l2col, l2col, Pd) #calculate new stress time derivatives gradlt = pdict['gridspc']**2 * CM.derivop(pdict['eps'], pdict['mu'], l2col, l2col, Pd, F) Pt = np.zeros((N * M, 2, 2)) for j in range(N * M): Pt[j, :, :] = np.dot(gradub[j, :, :], Ps[j, :, :]) + np.dot( np.dot(gradlt[j, :, :], Finv[j, :, :]), Ps[j, :, :]) - ( 1. / pdict['Wi']) * (Ps[j, :, :] - Finv[j, :, :].transpose()) return np.append(lt, Pt.flatten())
def simresults(basename, basedir): '''Retrieve approximate solution from saved output''' mydict = fileops.loadPickle(basename=basename, basedir=basedir) l = mydict['l'] S = mydict['S'] F = [] Finv = [] P = [] N = l[0].shape[0] M = l[0].shape[1] for k in range(len(mydict['t'])): Ft = SD2D.vectorGrad(l[k], mydict['pdict']['gridspc'], N, M) Ftemp = np.reshape(Ft, (N * M, 2, 2)) Ftinv = CM.matinv2x2(Ftemp) Ftinv = np.reshape(Ftinv, (N, M, 2, 2)) F.append(Ft.copy()) Finv.append(Ftinv.copy()) stress = np.zeros((N, M, 2, 2)) for j in range(N): for m in range(M): stress[j, m, :, :] = S[k][j, m, :, :] * Ftinv[j, m, :, :].transpose() P.append(stress.copy()) return l, P, S, F, Finv, mydict
def viscoElasticUpdaterKernelDeriv(t, y, pdict): #interior function for force pts only #split up long vector into individual sections (force pts, Lagrangian pts, stress components) if 'forcedict' not in pdict.keys(): pdict['forcedict'] = {} pdict['forcedict']['t'] = t N = pdict['N'] M = pdict['M'] Q = len(y) / 2 - N * M - 2 * N * M fpts = np.reshape(y[:2 * Q], (Q, 2)) l = y[range(2 * Q, 2 * Q + 2 * N * M)] l2col = np.reshape(l, (N * M, 2)) l3D = np.reshape(l, (N, M, 2)) allpts = y[:2 * Q + 2 * N * M] #both force points and Lagrangian points ap = np.reshape(allpts, (Q + N * M, 2)) P = np.reshape(y[(2 * Q + 2 * N * M):], (N, M, 2, 2)) Ps = np.reshape(P, (N * M, 2, 2)) #calculate tensor derivative Pd = pdict['beta'] * SD2D.tensorDiv(P, pdict['gridspc'], N, M) Pd = np.reshape(Pd, (N * M, 2)) #calculate spring forces f = pdict['myForces'](fpts, pdict['xr'], pdict['K'], **pdict['forcedict']) #calculate deformation matrix and its inverse gl = SD2D.vectorGrad(l3D, pdict['gridspc'], N, M) gls = np.reshape(gl, (N * M, 2, 2)) igls = CM.matinv2x2(gls) #calculate new velocities at all points of interest (Lagrangian points and force points) lt = pdict['gridspc']**2 * CM.matmult( pdict['eps'], pdict['mu'], ap, l2col, Pd) + CM.matmult( pdict['eps'], pdict['mu'], ap, fpts, f) #calculate new stress time derivatives glst = pdict['gridspc']**2 * CM.derivop( pdict['eps'], pdict['mu'], l2col, l2col, Pd, gls) + CM.derivop( pdict['eps'], pdict['mu'], l2col, fpts, f, gls) Pt = np.zeros((N * M, 2, 2)) for j in range(N * M): Pt[j, :, :] = np.dot(np.dot(glst[j, :, :], igls[j, :, :]), Ps[j, :, :]) - (1. / pdict['Wi']) * ( Ps[j, :, :] - igls[j, :, :].transpose()) return np.append(lt, Pt.flatten())
def viscoElasticUpdater_force(t, y, wdict): #interior function for force pts only #split up long vector into individual sections (force pts, Lagrangian pts, stress components) pdict = wdict['pdict'] pdict['forcedict']['t'] = t N = pdict['N'] M = pdict['M'] Q = len(y) / 2 - N * M - 2 * N * M fpts = np.reshape(y[:2 * Q], (Q, 2)) l2 = np.reshape(y[range(2 * Q, 2 * Q + 2 * N * M)], (N * M, 2)) l3 = np.reshape(l2, (N, M, 2)) allpts = np.reshape( y[:2 * Q + 2 * N * M], (Q + N * M, 2)) # both force points and Lagrangian points P2 = np.reshape(y[(2 * Q + 2 * N * M):], (N * M, 2, 2)) P3 = np.reshape(P2, (N, M, 2, 2)) #calculate tensor derivative Pd = pdict['beta'] * SD2D.tensorDiv(P3, pdict['gridspc'], N, M) Pd = np.reshape(Pd, (N * M, 2)) #calculate spring forces f = wdict['myForces'](fpts, **pdict['forcedict']) #calculate new velocities at all points of interest (Lagrangian points and force points) lt = pdict['gridspc']**2 * CM.matmult( pdict['eps_grid'], pdict['mu'], allpts, l2, Pd) + CM.matmult( pdict['eps_obj'], pdict['mu'], allpts, fpts, f) # reshape the velocities on the grid lt3 = np.reshape(lt[2 * Q:], (N, M, 2)) #calculate deformation matrix and its inverse F = SD2D.vectorGrad(l3, pdict['gridspc'], N, M) F = np.reshape(F, (N * M, 2, 2)) #calculate new stress time derivatives # gradlt = pdict['gridspc']**2*CM.derivop(pdict['eps_grid'],pdict['mu'],l2,l2,Pd,F) + CM.derivop(pdict['eps_obj'],pdict['mu'],l2,fpts,f,F) #grad(Stokeslet) method gradlt = SD2D.vectorGrad(lt3, pdict['gridspc'], N, M) gradlt = np.reshape(gradlt, (N * M, 2, 2)) # Finv = CM.matinv2x2(F) # first grad(u) method # Pt = np.zeros((N*M,2,2)) # for j in range(N*M): # Pt[j,:,:] = np.dot(np.dot(gradlt[j,:,:],Finv[j,:,:]),P2[j,:,:]) - (1./pdict['Wi'])*(P2[j,:,:] - Finv[j,:,:].transpose()) Pt = CM.stressDeriv(pdict['Wi'], gradlt, F, P2) return np.append(lt, Pt.flatten())
def stokesFlowUpdaterWithMarkers(t, y, wdict): pdict = wdict['pdict'] pdict['forcedict']['t'] = t N = pdict['N'] M = pdict['M'] Q = len(y) / 2 - N * M fpts = np.reshape(y[:2 * Q], (Q, 2)) ap = np.reshape(y, (Q + N * M, 2)) #calculate spring forces f = pdict['myForces'](fpts, **pdict['forcedict']) #calculate new velocities at all points of interest (Lagrangian points and force points) lt = CM.matmult(pdict['eps_obj'], pdict['mu'], ap, fpts, f) return lt
def stokesFlowUpdater(t, y, wdict): ''' t = current time, y = [fpts.flatten(), l.flatten(), P.flatten()], pdict contains: K is spring constant, xr is resting position, blob is regularized Stokeslet object, myForces is a function handle, forcedict is a dictionary containing optional parameters for calculating forces. ''' pdict = wdict['pdict'] pdict['forcedict']['t'] = t Q = len(y) / 2 fpts = np.reshape(y, (Q, 2)) f = wdict['myForces'](fpts, **pdict['forcedict']) yt = CM.matmult(pdict['eps_obj'], pdict['mu'], fpts, fpts, f) return yt
def simresults(basename, basedir): '''Retrieve approximate solution from saved output''' mydict = loadPickle(basename, basedir) l = mydict['l'] regridinds = findRegridTimes(l) S=mydict['S'] P=[] for k in range(len(mydict['t'])): # N and M can change because of regridding N = l[k].shape[0] M = l[k].shape[1] Ft = SD2D.vectorGrad(l[k],mydict['pdict']['gridspc'],N,M) Ftemp = np.reshape(Ft,(N*M,2,2)) Ftinv = CM.matinv2x2(Ftemp) Ftinv = np.reshape(Ftinv,(N,M,2,2)) stressP = np.zeros((N,M,2,2)) for j in range(N): for m in range(M): stressP[j,m,:,:] = S[k][j,m,:,:]*Ftinv[j,m,:,:].transpose() P.append(stressP.copy()) return l, P, S, mydict, regridinds
def simresults(basename, basedir): '''Retrieve approximate solution from saved output''' mydict = fileops.loadPickle(basename=basename, basedir=basedir) l = mydict['l'] S=mydict['S'] F=[] Finv=[] P=[] N = l[0].shape[0] M = l[0].shape[1] for k in range(len(mydict['t'])): Ft = SD2D.vectorGrad(l[k],mydict['pdict']['gridspc'],N,M) Ftemp = np.reshape(Ft,(N*M,2,2)) Ftinv = CM.matinv2x2(Ftemp) Ftinv = np.reshape(Ftinv,(N,M,2,2)) F.append(Ft.copy()) Finv.append(Ftinv.copy()) stress = np.zeros((N,M,2,2)) for j in range(N): for m in range(M): stress[j,m,:,:] = S[k][j,m,:,:]*Ftinv[j,m,:,:].transpose() P.append(stress.copy()) return l, P, S, F, Finv, mydict