Example #1
0
 def _get_saliency_matrix(self, position):
     client = AWSClient.get_client('s3')
     response = client.get_object(
         Bucket=Constants.S3_BUCKETS['SALIENCY_MAPS'],
         Key="{}_{}.json".format(self.hit_id, position))
     data = json.load(response['Body'])
     return np.array(data["saliencyMatrix"], np.uint8)
Example #2
0
    def run(self):
        # Create DB session
        session = TorchbearerDB.Session()

        try:
            for position in Constants.LANDMARK_POSITIONS.values():
                if AWSClient.s3_key_exists(
                        Constants.S3_BUCKETS['STREETVIEW_IMAGES'],
                        "{}_{}.jpg".format(self.hit_id, position)):
                    # Load saliency mask and image from S3
                    sm = self._get_saliency_matrix()
                    img = self._get_streetview_image(position)

                    if os.environ.get('debug'):
                        plt.imshow(img, alpha=1)
                        plt.imshow(sm, alpha=0.6)
                        plt.show()

                    # Compute sum of saliency mask
                    image_saliency_sum = sm.sum()

                    # Get list of individual salient regions
                    masks = MaskMaker.get_masks_from_saliency_map(sm)

                    for mask in masks:
                        candidate = GrabCut.crop_image_with_saliency_mask(
                            img, mask)

                        # Tack a GUID onto candidate dict
                        candidate['id'] = uuid.uuid1()

                        candidate['position'] = position

                        # Compute visual saliency score
                        r = candidate['rect']
                        region_saliency_sum = sm[r['y1']:r['y2'],
                                                 r['x1']:r['x2']].sum()
                        candidate[
                            'visual_saliency_score'] = region_saliency_sum / float(
                                image_saliency_sum)

                        # candidate["image"].show()
                        # candidate["image_transparent"].show()

                        # Put cropped images into S3
                        self._put_cropped_images(candidate)

                        # Insert candidate landmark into DB
                        self._insert_candidate_landmark(candidate, session)

            # Commit DB inserts
            session.commit()

            # Send success!
            self.send_success()

        except Exception as e:
            traceback.print_exc()
            session.rollback()
            self.send_failure('MATRIX MASTER ERROR', e.message)
Example #3
0
    def run(self):
        print("Starting mask task for ep {}, hit {}".format(
            self.ep_id, self.hit_id))

        # Create DB session
        session = TorchbearerDB.Session()

        try:
            hit = session.query(Hit.Hit).filter_by(hit_id=self.hit_id).one()
            hit.set_start_time_for_task("mask")

            for position in Constants.LANDMARK_POSITIONS.values():
                if AWSClient.s3_key_exists(
                        Constants.S3_BUCKETS['SALIENCY_MAPS'],
                        "{}_{}.json".format(self.hit_id, position)):
                    # Load saliency mask and image from S3
                    sm = self._get_saliency_matrix(position)

                    bounding_boxes = MaskMaker.make_bounding_boxes(sm)

                    for bb in bounding_boxes:
                        x1, x2, y1, y2 = [
                            bb[k] for k in ('x1', 'x2', 'y1', 'y2')
                        ]
                        if os.environ.get('debug'):
                            cv2.imshow("Output", sm[y1:y2, x1:x2])
                            cv2.waitKey(0)

                        landmark = {
                            'id': uuid.uuid1(),
                            'rect': {
                                'x1': x1,
                                'x2': x2,
                                'y1': y1,
                                'y2': y2
                            },
                            'position': position
                        }

                        # Insert candidate landmark into DB
                        self._insert_candidate_landmark(landmark, session)

            hit.set_end_time_for_task("mask")

            # Commit DB inserts
            session.commit()

            # Send success!
            self.send_success()
            print("Completed mask task for ep {}, hit {}".format(
                self.ep_id, self.hit_id))

        except Exception as e:
            traceback.print_exc()
            session.rollback()
            self.send_failure('MATRIX MASTER ERROR', e.message)

        finally:
            session.close()
Example #4
0
 def _get_streetview_image(self, position):
     client = AWSClient.get_client('s3')
     response = client.get_object(
         Bucket=Constants.S3_BUCKETS['STREETVIEW_IMAGES'],
         Key="{}_{}.jpg".format(self.hit_id, position))
     img = Image.open(response['Body'])
     # img.show()
     return np.array(img)
Example #5
0
 def _delete_s3_objects(bucket, keys):
     client = AWSClient.get_client('s3')
     key_dict = dict(('Key', keyName) for keyName in keys)
     try:
         client.delete_objects(Bucket=bucket,
                               Delete={'Objects': [key_dict]})
     except Exception:
         print "Couldn't delete the given S3 object."
Example #6
0
 def _read_streetview_img_from_s3(self, position):
     client = AWSClient.get_client('s3')
     response = client.get_object(
         Bucket=Constants.S3_BUCKETS['STREETVIEW_IMAGES'],
         Key="{}_{}.jpg".format(self.ep_id, position)
     )
     img = Image.open(response['Body'])
     # img.show()
     img = np.array(img)
     img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
     return img
Example #7
0
    def _put_marked_streetview_image(img_file, landmark_id):
        client = AWSClient.get_client('s3')

        # Make sure file is "rewound"
        img_file.seek(0)

        # Put cropped image
        client.put_object(
            Body=img_file,
            Bucket=Constants.S3_BUCKETS['MARKED_LANDMARK_IMAGES'],
            Key="{0}.png".format(landmark_id))
Example #8
0
    def _put_cropped_image(img, landmark_id):
        img_file = StringIO()
        img.save(img_file, 'PNG')

        client = AWSClient.get_client('s3')

        # Put cropped image
        client.put_object(
            Body=img_file,
            Bucket=Constants.S3_BUCKETS['TRANSPARENT_CROPPED_IMAGES'],
            Key="{0}.png".format(landmark_id))
Example #9
0
    def _run_vision_task(self):
        # Create DB session
        session = TorchbearerDB.Session()

        try:
            for position in Constants.LANDMARK_POSITIONS.values():
                if AWSClient.s3_key_exists(Constants.S3_BUCKETS['SALIENCY_MAPS'],
                                           "{}_{}.json".format(self.hit_id, position)):

                    # Get streetview image for this Hit's ExecutionPoint
                    img = self._read_streetview_img_from_s3(position)

                    # Run object detection
                    detections = score_image(img)

                    # loop over detected objects, creating landmarks from them
                    for region in detections:
                        x1 = region['x1']
                        x2 = region['x2']
                        y1 = region['y1']
                        y2 = region['y2']
                        description = region['label']
                        visual_saliency_score = region['score']

                        if os.environ.get('debug'):
                            cv2.imshow("Output", img[y1:y2, x1:x2])
                            cv2.waitKey(0)

                        landmark = {
                            'id': uuid.uuid1(),
                            'description': description,
                            'rect': {'x1': x1, 'x2': x2, 'y1': y1, 'y2': y2},
                            'position': position,
                            'visual_saliency_score': visual_saliency_score
                        }

                        # Insert candidate landmark into DB
                        self._insert_candidate_landmark(landmark, session)

            # Commit DB inserts
            session.commit()

            self.send_success()

        except Exception as e:
            traceback.print_exc()
            self.send_failure('OBJECT_DETECTION_ERROR', e.message)
Example #10
0
    def _put_cropped_images(candidate):
        img_file = BytesIO()
        transparent_img_file = BytesIO()
        candidate['image'].save(img_file, 'PNG')
        candidate['image_transparent'].save(transparent_img_file, 'PNG')
        img_file.seek(0)
        transparent_img_file.seek(0)

        client = AWSClient.get_client('s3')

        # Put cropped image
        client.put_object(Body=img_file,
                          ContentType='image/png',
                          Bucket=Constants.S3_BUCKETS['CROPPED_IMAGES'],
                          Key="{0}.png".format(candidate['id']))

        # Put transparent cropped image
        client.put_object(
            Body=transparent_img_file,
            ContentType='image/png',
            Bucket=Constants.S3_BUCKETS['TRANSPARENT_CROPPED_IMAGES'],
            Key="{0}.png".format(candidate['id']))
Example #11
0
    def run(self):
        print("Starting score task for ep {}, hit {}".format(
            self.ep_id, self.hit_id))

        # Create DB session
        session = TorchbearerDB.Session()

        try:
            hit = session.query(Hit.Hit).filter_by(hit_id=self.hit_id).one()
            hit.set_start_time_for_task("score")

            # Load saliency mask and image from S3, across all positions available for this ExecutionPoint
            for position in Constants.LANDMARK_POSITIONS.values():
                if AWSClient.s3_key_exists(
                        Constants.S3_BUCKETS['STREETVIEW_IMAGES'],
                        "{}_{}.jpg".format(self.hit_id, position)):
                    sm = self._get_saliency_matrix(position)
                    img = self._get_streetview_image(position)

                    if os.environ.get('debug'):
                        plt.imshow(img, alpha=1)
                        plt.imshow(sm, alpha=0.6)
                        plt.show()

                    # Compute sum of saliency mask
                    image_saliency_sum = sm.sum()

                    # Retrieve landmarks for this hit and position
                    for landmark in session.query(Landmark.Landmark) \
                            .filter_by(hit_id=self.hit_id, position=position).all():

                        # Compute visual saliency score for this landmark
                        r = landmark.get_rect()

                        # If rectangle was not already defined by another service, do optimistic saliency search
                        # Note that this can still return None
                        # Save this rect with landmark back to db
                        if r is None:
                            r = OptimisticSearch.get_salient_area_at_degrees(
                                img, sm, landmark.relative_bearing)
                            landmark.set_rect(r)

                        visual_saliency_score = sm[r['y1']:r['y2'], r['x1']:r['x2']].sum() / float(image_saliency_sum) \
                            if r is not None else 0

                        landmark.visual_saliency_score = visual_saliency_score

            hit.set_end_time_for_task("score")

            # Commit DB inserts
            session.commit()

            # Send success!
            self.send_success()
            print("Completed score task for ep {}, hit {}".format(
                self.ep_id, self.hit_id))

        except Exception as e:
            traceback.print_exc()
            session.rollback()
            self.send_failure('MATRIX MASTER ERROR', e.message)

        finally:
            session.close()
Example #12
0
    def _run_landmark_marker(self):
        print("Starting mark task for ep {}, hit {}".format(
            self.ep_id, self.hit_id))

        # Create DB session
        session = TorchbearerDB.Session()

        try:
            hit = session.query(Hit).filter_by(hit_id=self.hit_id).one()
            hit.set_start_time_for_task("landmark_mark")

            # Load from S3, across all positions available for corresponding ExecutionPoint
            for position in Constants.LANDMARK_POSITIONS.values():
                if AWSClient.s3_key_exists(
                        Constants.S3_BUCKETS['STREETVIEW_IMAGES'],
                        "{}_{}.jpg".format(self.hit_id, position)):

                    # Get streetview image for this Hit's ExecutionPoint
                    img_array = self._get_streetview_image(position)

                    # Get all landmarks for this hit for given position
                    for landmark in session.query(Landmark).filter_by(
                            hit_id=self.hit_id, position=position).all():
                        # Create figure and axes
                        fig, ax = plt.subplots(figsize=(8, 8), dpi=72)

                        # Remove axes
                        ax.axis('off')
                        fig.axes[0].get_xaxis().set_visible(False)
                        fig.axes[0].get_yaxis().set_visible(False)

                        # Add the image
                        ax.imshow(img_array)

                        # Create a Rectangle patch
                        x1 = landmark.get_rect()["x1"]
                        x2 = landmark.get_rect()["x2"]
                        y1 = landmark.get_rect()["y1"]
                        y2 = landmark.get_rect()["y2"]

                        width = x2 - x1
                        height = y2 - y1

                        rect = patches.Rectangle((x1, y1),
                                                 width,
                                                 height,
                                                 linewidth=2,
                                                 edgecolor='r',
                                                 facecolor='none')

                        # Add the patch to the Axes
                        ax.add_patch(rect)

                        # Save image
                        img_file = BytesIO()
                        fig.savefig(img_file,
                                    format='png',
                                    bbox_inches='tight',
                                    pad_inches=0)
                        self._put_marked_streetview_image(
                            img_file, landmark.landmark_id)
                        # fig.show()

            hit.set_end_time_for_task("landmark_mark")

            # Commit DB inserts
            session.commit()

            self.send_success()
            print("Completed mark task for ep {}, hit {}".format(
                self.ep_id, self.hit_id))

        except Exception, e:
            traceback.print_exc()
            self.send_failure('LANDMARK_MARK_ERROR', e.message)
Example #13
0
    def run(self):
        # Create DB session
        session = TorchbearerDB.Session()

        try:
            hit = session.query(Hit).filter_by(hit_id=self.hit_id).one()
            hit.set_start_time_for_task("crop")

            # Load from S3, across all positions available for corresponding ExecutionPoint
            for position in Constants.LANDMARK_POSITIONS.values():
                if AWSClient.s3_key_exists(
                        Constants.S3_BUCKETS['STREETVIEW_IMAGES'],
                        "{}_{}.jpg".format(self.hit_id, position)):

                    img = self._get_streetview_image(position)

                    # Load all Landmarks for this hit, position
                    for landmark in session.query(Landmark).filter_by(
                            hit_id=self.hit_id, position=position).all():
                        # Crop image according to Landmark rect
                        rect = landmark.get_rect()
                        rect = (rect['x1'], rect['y1'], rect['x2'], rect['y2'])

                        # Perform image segmentation to extract foreground object
                        arr = np.asarray(img)
                        cv_img = cv2.cvtColor(arr, cv2.COLOR_RGB2BGR)

                        mask = np.zeros(cv_img.shape[:2], np.uint8)
                        bgdModel = np.zeros((1, 65), np.float64)
                        fgdModel = np.zeros((1, 65), np.float64)

                        cv2.grabCut(cv_img, mask, rect, bgdModel, fgdModel, 5,
                                    cv2.GC_INIT_WITH_RECT)

                        # If mask==2 or mask== 1, mask2 get 0, other wise it gets 1 as 'uint8' type.
                        mask2 = np.where((mask == 2) | (mask == 0), 0,
                                         1).astype('uint8')

                        # Project image into RGBA space
                        cv_img = cv2.cvtColor(cv_img, cv2.COLOR_BGR2BGRA)

                        # Set alpha based on segment_mask.
                        # Set red channel to 100% for viewers that don't support alpha channel.
                        cv_img[mask2 == 0] = [255, 0, 0, 0]

                        # Convert cv2 img back to PIL img
                        img = Image.fromarray(cv_img)

                        # Crop cut image down to landmark rect
                        img = img.crop(rect)

                        if os.environ.get('debug'):
                            plt.imshow(img)
                            plt.show()

                        # Put cropped images into S3
                        self._put_cropped_image(img, landmark.landmark_id)

            hit.set_end_time_for_task("crop")

            # Commit DB inserts, if any
            session.commit()

            # Send success!
            self.send_success()

        except Exception as e:
            traceback.print_exc()
            session.rollback()
            self.send_failure('CROP_ERROR', e.message)

        finally:
            session.close()