def fromXML(self, xmlObj): from lxml.etree import _Element if xmlObj.__class__ != _Element: raise Exception('You must provide a valid XML object.') if xmlObj.tag == "CTFCorrectionJob": jobDescription = xmlObj else: jobDescription = xmlObj.xpath('CTFCorrectionJob') if len(jobDescription) == 0: raise Exception("This XML is not a CTFCorrectionJob.") jobDescription = jobDescription[0] from pytom.basic.structures import ParticleList, Reference, Mask, SampleInformation particleList_element = jobDescription.xpath('ParticleList')[0] pl = ParticleList('.') pl.fromXML(particleList_element) self.particleList = pl self.reference = [] r = jobDescription.xpath('Reference') for ref_obj in r: ref = Reference('') ref.fromXML(ref_obj) self.reference.append(ref) m = jobDescription.xpath('Mask')[0] self.mask = Mask('') self.mask.fromXML(m) try: si = jobDescription.xpath('SampleInformation')[0] self.sampleInformation = SampleInformation() self.sampleInformation.fromXML(si) except: self._sampleInformation = SampleInformation() self.ctf_conv_pl = jobDescription.get('CTFConvolutedParticleList') self.peak_offset = int(jobDescription.get('PeakOffset')) self.bw_range = [ int(i) for i in jobDescription.get('BandwidthRange')[1:-1].split(',') ] self.freq = int(jobDescription.get('Frequency')) self.destination = jobDescription.get('Destination') self.max_iter = int(jobDescription.get('MaxIterations')) self.r_score = jobDescription.get('RScore') == 'True' self.weighting = jobDescription.get('WeightedAverage') == 'True' self.bfactor = jobDescription.get('BFactor') self.sum_ctf_sqr = jobDescription.get('CTFSquared')
raise RuntimeError('Destination directory ' + destination + ' does not exist!') from pytom.cluster.mcoEXMXStructures import MCOEXMXJob from pytom.basic.structures import ParticleList, Reference, Mask, Wedge, SampleInformation, PointSymmetry from pytom.score.score import FLCFScore from pytom.frontend.serverpages.createMCOEXMXJob import createRunscripts from pytom.alignment.preprocessing import Preprocessing p = ParticleList() p.fromXMLFile(particleList) m = Mask(mask) w = Wedge([float(wedge1), float(wedge2)]) pre = Preprocessing(lowestFrequency=float(lowestFrequency), highestFrequency=float(highestFrequency)) sample = SampleInformation(pixelSize=float(pixelSize), particleDiameter=float(diameter)) if symmetryN is None or symmetryAxisZ is None or symmetryAxisX is None: sym = None else: sym = PointSymmetry(nfold=int(symmetryN), z2=float(symmetryAxisZ), x=float(symmetryAxisX)) job = MCOEXMXJob(particleList=p,numberIterations=numberIterations,\ destinationDirectory=destination,mask=mask,score=FLCFScore(),preprocessing=pre,\ wedgeInfo=w,binning=int(binning),sampleInformation=sample,numberClasses=int(numberClasses),\ endThreshold=float(endThreshold),symmetry = sym,doAlignment = False,frmBandwidth = None) job.toXMLFile(jobName)
def fromXML(self, xmlObj): """ read from xml file @param xmlObj: xml object @type xmlObj: L{lxml.etree.Element} """ from lxml.etree import _Element if xmlObj.__class__ != _Element: raise Exception('You must provide a valid XML object.') if xmlObj.tag == "FRMJob": jobDescription = xmlObj else: jobDescription = xmlObj.xpath('FRMJob') if len(jobDescription) == 0: raise Exception("This XML is not a FRMJob.") jobDescription = jobDescription[0] from pytom.basic.structures import ParticleList, Reference, Mask, SampleInformation, MultiSymmetries pl = ParticleList('.') particleList_element = jobDescription.xpath('ParticleList') if len(particleList_element) > 0: pl.fromXML(particleList_element[0]) else: list_elements = jobDescription.xpath('ParticleListLocation') for e in list_elements: sub_pl = ParticleList() sub_pl.fromXMLFile(e.get('Path')) pl += sub_pl self.particleList = pl r = jobDescription.xpath('Reference')[0] self.reference = Reference('') self.reference.fromXML(r) m = jobDescription.xpath('Mask')[0] self.mask = Mask('') self.mask.fromXML(m) try: si = jobDescription.xpath('SampleInformation')[0] self.sampleInformation = SampleInformation() self.sampleInformation.fromXML(si) except: self.sampleInformation = SampleInformation() try: syms = jobDescription.xpath('MultiSymmetries')[0] self.symmetries = MultiSymmetries() self.symmetries.fromXML(syms) except: self.symmetries = MultiSymmetries() self.peak_offset = int(jobDescription.get('PeakOffset')) self.bw_range = [ int(i) for i in jobDescription.get('BandwidthRange')[1:-1].split(',') ] self.freq = int(jobDescription.get('Frequency')) self.destination = jobDescription.get('Destination') self.max_iter = int(jobDescription.get('MaxIterations')) self.r_score = jobDescription.get('RScore') == 'True' self.weighting = jobDescription.get('WeightedAverage') == 'True' self.bfactor = jobDescription.get('BFactor') self.binning = int(jobDescription.get('binning')) if jobDescription.get('AdaptiveResolution'): adaptive_resolution = jobDescription.get('AdaptiveResolution') if adaptive_resolution == '+1': self.adaptive_res = False # always increase by 1 else: self.adaptive_res = float(adaptive_resolution) else: self.adaptive_res = 0.0 # default, if not specified if jobDescription.get('FSC'): self.fsc_criterion = float(jobDescription.get('FSC')) else: self.fsc_criterion = 0.5 # default value # for the constraint try: from sh_alignment.constrained_frm import AngularConstraint con = jobDescription.xpath('AngularConstraint') if len(con) != 0: ac = AngularConstraint() c = ac.fromXML(con[0]) self.constraint = c else: self.constraint = None except: self.constraint = None
class FRMJob(PyTomClass): # i need to rename the class, but for now it works def __init__(self, pl=None, ref=None, mask=None, peak_offset=0, sample_info=None, bw_range=None, freq=None, dest='.', max_iter=10, r_score=False, weighting=False, bfactor=None, symmetries=None, adaptive_res=0.1, fsc_criterion=0.5, constraint=None, binning=1): """ initiate FRM job @param pl: particle list @type ps: L{pytom.basic.structures.ParticleList} @param ref: reference density @type ref: L{pytom.basic.structures.Reference} @param mask: mask @type ref: L{pytom.basic.structures.Mask} @param peak_offset: peak offset in voxel @type peak_offset: C{int} @param sample_info: ?? (Default: None) @type sample_info: ?? @param bw_range: bandwidth range in pixel (2-dim vector) @type bw_range: C{list} @param freq: frequency (default: None) @type: C{int} @param dest: distination directory (default: '.') @type: C{str} @param max_iter: maximum number of iterations @type max_iter: C{int} @param r_score: use r_score (??) (default: False) @type r_score: C{bool} @param weighting: weighting (default: False) @type weighting: C{bool} @param bfactor: B-factor (default: None) @type bfactor: C{float}? @param symmetries: symmetry (default: None) @type L{pytom.basic.structures.Symmetries} @param adaptive_res: adaptive resolution - add to resolution for filtering @type adaptive_res: C{float} @param fsc_criterion: FSC criterion (default: 0.5) @type fsc_criterion: C{float} @param constraint: Constraint on orientations (deafult: None) @type constraint: ?? @param binning: Perform binning (downscale) of subvolumes by factor. Default=1. @type binning C{float} """ self.particleList = pl self.reference = ref self.mask = mask self.peak_offset = peak_offset self.sampleInformation = sample_info self.bw_range = bw_range self.freq = freq self.destination = dest self.max_iter = max_iter self.r_score = r_score self.weighting = weighting self.bfactor = bfactor self.symmetries = symmetries self.adaptive_res = adaptive_res self.fsc_criterion = fsc_criterion self.constraint = constraint self.binning = binning def fromXML(self, xmlObj): """ read from xml file @param xmlObj: xml object @type xmlObj: L{lxml.etree.Element} """ from lxml.etree import _Element if xmlObj.__class__ != _Element: raise Exception('You must provide a valid XML object.') if xmlObj.tag == "FRMJob": jobDescription = xmlObj else: jobDescription = xmlObj.xpath('FRMJob') if len(jobDescription) == 0: raise Exception("This XML is not a FRMJob.") jobDescription = jobDescription[0] from pytom.basic.structures import ParticleList, Reference, Mask, SampleInformation, MultiSymmetries pl = ParticleList('.') particleList_element = jobDescription.xpath('ParticleList') if len(particleList_element) > 0: pl.fromXML(particleList_element[0]) else: list_elements = jobDescription.xpath('ParticleListLocation') for e in list_elements: sub_pl = ParticleList() sub_pl.fromXMLFile(e.get('Path')) pl += sub_pl self.particleList = pl r = jobDescription.xpath('Reference')[0] self.reference = Reference('') self.reference.fromXML(r) m = jobDescription.xpath('Mask')[0] self.mask = Mask('') self.mask.fromXML(m) try: si = jobDescription.xpath('SampleInformation')[0] self.sampleInformation = SampleInformation() self.sampleInformation.fromXML(si) except: self.sampleInformation = SampleInformation() try: syms = jobDescription.xpath('MultiSymmetries')[0] self.symmetries = MultiSymmetries() self.symmetries.fromXML(syms) except: self.symmetries = MultiSymmetries() self.peak_offset = int(jobDescription.get('PeakOffset')) self.bw_range = [ int(i) for i in jobDescription.get('BandwidthRange')[1:-1].split(',') ] self.freq = int(jobDescription.get('Frequency')) self.destination = jobDescription.get('Destination') self.max_iter = int(jobDescription.get('MaxIterations')) self.r_score = jobDescription.get('RScore') == 'True' self.weighting = jobDescription.get('WeightedAverage') == 'True' self.bfactor = jobDescription.get('BFactor') self.binning = int(jobDescription.get('binning')) if jobDescription.get('AdaptiveResolution'): adaptive_resolution = jobDescription.get('AdaptiveResolution') if adaptive_resolution == '+1': self.adaptive_res = False # always increase by 1 else: self.adaptive_res = float(adaptive_resolution) else: self.adaptive_res = 0.0 # default, if not specified if jobDescription.get('FSC'): self.fsc_criterion = float(jobDescription.get('FSC')) else: self.fsc_criterion = 0.5 # default value # for the constraint try: from sh_alignment.constrained_frm import AngularConstraint con = jobDescription.xpath('AngularConstraint') if len(con) != 0: ac = AngularConstraint() c = ac.fromXML(con[0]) self.constraint = c else: self.constraint = None except: self.constraint = None def toXML(self): """ copy to xml structure @return: xml object for job @rtype L{lxml.etree.Element} """ from lxml import etree jobElement = etree.Element("FRMJob") jobElement.append(self.particleList.toXML()) jobElement.append(self.reference.toXML()) jobElement.append(self.mask.toXML()) jobElement.append(self.sampleInformation.toXML()) if self.symmetries is not None: jobElement.append(self.symmetries.toXML()) jobElement.set("PeakOffset", str(self.peak_offset)) jobElement.set("BandwidthRange", str(self.bw_range)) jobElement.set("Frequency", str(self.freq)) jobElement.set("Destination", self.destination) jobElement.set("MaxIterations", str(self.max_iter)) jobElement.set("RScore", str(self.r_score)) jobElement.set("WeightedAverage", str(self.weighting)) jobElement.set("BFactor", str(self.bfactor)) jobElement.set("binning", str(self.binning)) if self.adaptive_res is False: jobElement.set("AdaptiveResolution", '+1') else: jobElement.set("AdaptiveResolution", str(self.adaptive_res)) jobElement.set("FSC", str(self.fsc_criterion)) if self.constraint: jobElement.append(self.constraint.toXML()) return jobElement def check(self): from pytom.tools.files import checkDirExists self.particleList.check() self.reference.check() self.mask.check() if not checkDirExists(self.destination): raise RuntimeError('Destination path not found! ' + self.destination)
class FRMJob(PyTomClass): # i need to rename the class, but for now it works def __init__(self, pl=None, ref=None, mask=None, peak_offset=0, sample_info=None, bw_range=None, freq=None, dest='.', max_iter=10, r_score=False, weighting=False, bfactor=None, symmetries=None, adaptive_res=0.1, fsc_criterion=0.5, constraint=None): self.particleList = pl self.reference = ref self.mask = mask self.peak_offset = peak_offset self.sampleInformation = sample_info self.bw_range = bw_range self.freq = freq self.destination = dest self.max_iter = max_iter self.r_score = r_score self.weighting = weighting self.bfactor = bfactor self.symmetries = symmetries self.adaptive_res = adaptive_res self.fsc_criterion = fsc_criterion self.constraint = constraint def fromXML(self, xmlObj): from lxml.etree import _Element if xmlObj.__class__ != _Element: raise Exception('You must provide a valid XML object.') if xmlObj.tag == "FRMJob": jobDescription = xmlObj else: jobDescription = xmlObj.xpath('FRMJob') if len(jobDescription) == 0: raise Exception("This XML is not a FRMJob.") jobDescription = jobDescription[0] from pytom.basic.structures import ParticleList, Reference, Mask, SampleInformation, MultiSymmetries pl = ParticleList('.') particleList_element = jobDescription.xpath('ParticleList') if len(particleList_element) > 0: pl.fromXML(particleList_element[0]) else: list_elements = jobDescription.xpath('ParticleListLocation') for e in list_elements: sub_pl = ParticleList() sub_pl.fromXMLFile(e.get('Path')) pl += sub_pl self.particleList = pl r = jobDescription.xpath('Reference')[0] self.reference = Reference('') self.reference.fromXML(r) m = jobDescription.xpath('Mask')[0] self.mask = Mask('') self.mask.fromXML(m) try: si = jobDescription.xpath('SampleInformation')[0] self.sampleInformation = SampleInformation() self.sampleInformation.fromXML(si) except: self.sampleInformation = SampleInformation() try: syms = jobDescription.xpath('MultiSymmetries')[0] self.symmetries = MultiSymmetries() self.symmetries.fromXML(syms) except: self.symmetries = MultiSymmetries() self.peak_offset = int(jobDescription.get('PeakOffset')) self.bw_range = [ int(i) for i in jobDescription.get('BandwidthRange')[1:-1].split(',') ] self.freq = int(jobDescription.get('Frequency')) self.destination = jobDescription.get('Destination') self.max_iter = int(jobDescription.get('MaxIterations')) self.r_score = jobDescription.get('RScore') == 'True' self.weighting = jobDescription.get('WeightedAverage') == 'True' self.bfactor = jobDescription.get('BFactor') if jobDescription.get('AdaptiveResolution'): adaptive_resolution = jobDescription.get('AdaptiveResolution') if adaptive_resolution == '+1': self.adaptive_res = False # always increase by 1 else: self.adaptive_res = float(adaptive_resolution) else: self.adaptive_res = 0.0 # default, if not specified if jobDescription.get('FSC'): self.fsc_criterion = float(jobDescription.get('FSC')) else: self.fsc_criterion = 0.5 # default value # for the constraint try: from sh_alignment.constrained_frm import AngularConstraint con = jobDescription.xpath('AngularConstraint') if len(con) != 0: ac = AngularConstraint() c = ac.fromXML(con[0]) self.constraint = c else: self.constraint = None except: self.constraint = None def toXML(self): from lxml import etree jobElement = etree.Element("FRMJob") jobElement.append(self.particleList.toXML()) jobElement.append(self.reference.toXML()) jobElement.append(self.mask.toXML()) jobElement.append(self.sampleInformation.toXML()) if self.symmetries is not None: jobElement.append(self.symmetries.toXML()) jobElement.set("PeakOffset", str(self.peak_offset)) jobElement.set("BandwidthRange", str(self.bw_range)) jobElement.set("Frequency", str(self.freq)) jobElement.set("Destination", self.destination) jobElement.set("MaxIterations", str(self.max_iter)) jobElement.set("RScore", str(self.r_score)) jobElement.set("WeightedAverage", str(self.weighting)) jobElement.set("BFactor", str(self.bfactor)) if self.adaptive_res is False: jobElement.set("AdaptiveResolution", '+1') else: jobElement.set("AdaptiveResolution", str(self.adaptive_res)) jobElement.set("FSC", str(self.fsc_criterion)) if self.constraint: jobElement.append(self.constraint.toXML()) return jobElement def check(self): from pytom.tools.files import checkDirExists self.particleList.check() self.reference.check() self.mask.check() if not checkDirExists(self.destination): raise RuntimeError('Destination path not found! ' + self.destination)
def interpretRequestParameters(parameters): """ interpretRequestParameters """ from pytom.basic.structures import ParticleList, SampleInformation, Reference, Mask, Wedge from pytom.alignment.preprocessing import Preprocessing from pytom.frontend.serverpages.serverMessages import FileMessage particleList = ParticleList() if 'plXML' in parameters: particleList.fromXMLFile(parameters['plXML']) elif 'plDIR' in parameters: particleList = ParticleList(parameters['plDIR']) particleList.loadDirectory() else: raise RuntimeError('ParticleList parameter missing in request!') sampleInfo = SampleInformation() if 'pixSize' in parameters: sampleInfo.setPixelSize(parameters['pixSize']) else: raise RuntimeError('Pixelsize parameter missing in request!') if 'partDia' in parameters: sampleInfo.setParticleDiameter(parameters['partDia']) else: raise RuntimeError('Particle diameter missing in request!') if 'wa1' in parameters: wedgeAngle1 = float(parameters['wa1']) else: raise RuntimeError('Wedge angle 1 parameter missing in request!') if 'wa2' in parameters: wedgeAngle2 = float(parameters['wa2']) else: raise RuntimeError('Wedge angle 2 parameter missing in request!') wedgeInfo = Wedge([wedgeAngle1, wedgeAngle2]) if 'mask' in parameters: mask = Mask(parameters['mask']) else: raise RuntimeError('Mask parameter missing in request!') if not 'lowestF' in parameters: raise RuntimeError('Lowest frequency parameter missing in request!') if not 'highestF' in parameters: raise RuntimeError('Highest frequency parameter missing in request!') if not 'filtSm' in parameters: raise RuntimeError('Filter smooth parameter missing in request!') preprocessing = Preprocessing(float(parameters['lowestF']), float(parameters['highestF']), float(parameters['filtSm'])) score = None if 'score' in parameters: if parameters['score'] == 'xcf': from pytom.score.score import xcfScore as scoreClass elif parameters['score'] == 'nxcf': from pytom.score.score import nxcfScore as scoreClass elif parameters['score'] == 'flcf': from pytom.score.score import FLCFScore as scoreClass score = scoreClass() else: raise RuntimeError('Score parameter missing in request!') if 'iter' in parameters: iterations = int(parameters['iter']) else: raise RuntimeError('Number of iterations missing in request!') if 'binning' in parameters: binning = int(parameters['binning']) else: raise RuntimeError('Scaling parameter missing in request!') if 'classes' in parameters: numberClasses = float(parameters['classes']) else: raise RuntimeError('Number classes parameter missing in request!') if 'conv' in parameters: convergence = float(parameters['conv']) else: raise RuntimeError('Convergence parameter missing in request!') if 'dest' in parameters: destination = parameters['dest'] else: raise RuntimeError('Destination parameter missing in request!') sampleInfo = SampleInformation() if 'pixSize' in parameters: sampleInfo.setPixelSize(float(parameters['pixSize'])) else: raise RuntimeError('Pixelsize parameter missing in request!') if 'partDia' in parameters: sampleInfo.setParticleDiameter(float(parameters['partDia'])) else: raise RuntimeError('Particle diameter missing in request!') from pytom.cluster.mcoEXMXStructures import MCOEXMXJob job = MCOEXMXJob(particleList, iterations, destination, mask, score, preprocessing, wedgeInfo, binning, sampleInfo, numberClasses, convergence, symmetry=None) jobXMLFile = '' if 'jobFile' in parameters: jobXMLFile = parameters['jobFile'] job.toXMLFile(jobXMLFile) jobRunFile = jobXMLFile[0:-3] createRunscripts(jobRunFile + 'sh', jobXMLFile) return FileMessage('MCOEXMXJob', jobXMLFile, 'created')
def interpretRequestParameters(parameters): """ interpretRequestParameters """ from pytom.basic.structures import ParticleList, SampleInformation, Reference, Mask, Wedge from pytom.alignment.preprocessing import Preprocessing from pytom.frontend.serverpages.serverMessages import FileMessage particleList = ParticleList('.') if 'plXML' in parameters: particleList.fromXMLFile(parameters['plXML']) elif 'plDIR' in parameters: particleList = ParticleList(parameters['plDIR']) particleList.loadDirectory() else: raise RuntimeError('ParticleList parameter missing in request!') sampleInfo = SampleInformation() if 'pixSize' in parameters: sampleInfo.setPixelSize(parameters['pixSize']) else: raise RuntimeError('Pixelsize parameter missing in request!') if 'partDia' in parameters: sampleInfo.setParticleDiameter(parameters['partDia']) else: raise RuntimeError('Particle diameter missing in request!') if 'wa1' in parameters: wedgeAngle1 = float(parameters['wa1']) else: raise RuntimeError('Wedge angle 1 parameter missing in request!') if 'wa2' in parameters: wedgeAngle2 = float(parameters['wa2']) else: raise RuntimeError('Wedge angle 2 parameter missing in request!') wedgeInfo = Wedge([wedgeAngle1, wedgeAngle2]) if 'mask' in parameters: mask = Mask(parameters['mask']) else: raise RuntimeError('Mask parameter missing in request!') if not 'lowestF' in parameters: raise RuntimeError('Lowest frequency parameter missing in request!') if not 'highestF' in parameters: raise RuntimeError('Highest frequency parameter missing in request!') if not 'filtSm' in parameters: raise RuntimeError('Filter smooth parameter missing in request!') preprocessing = Preprocessing(float(parameters['lowestF']), float(parameters['highestF']), float(parameters['filtSm'])) score = None if 'score' in parameters: if parameters['score'] == 'xcf': from pytom.score.score import xcfScore as scoreClass elif parameters['score'] == 'nxcf': from pytom.score.score import nxcfScore as scoreClass elif parameters['score'] == 'flcf': from pytom.score.score import FLCFScore as scoreClass score = scoreClass() else: raise RuntimeError('Score parameter missing in request!') if 'binning' in parameters: binning = int(parameters['binning']) else: raise RuntimeError('Scaling parameter missing in request!') if 'classes' in parameters: numberClasses = float(parameters['classes']) else: raise RuntimeError('Number classes parameter missing in request!') if 'conv' in parameters: convergence = float(parameters['conv']) else: raise RuntimeError('Convergence parameter missing in request!') if 'dest' in parameters: destination = parameters['dest'] else: raise RuntimeError('Destination parameter missing in request!') sampleInfo = SampleInformation() if 'pixSize' in parameters: sampleInfo.setPixelSize(float(parameters['pixSize'])) else: raise RuntimeError('Pixelsize parameter missing in request!') if 'partDia' in parameters: sampleInfo.setParticleDiameter(float(parameters['partDia'])) else: raise RuntimeError('Particle diameter missing in request!') temperature = None if 'temp' in parameters: temperature = parameters['temp'] if 'stemp' in parameters: startTemperature = float(parameters['stemp']) else: raise RuntimeError( 'Start temperature parameter missing in request!') if 'astep' in parameters: annealingStep = float(parameters['astep']) else: raise RuntimeError('Annealing step parameter missing in request!') from pytom.cluster.mcoACStructures import SigmaTemperature if temperature == 'sigma': temperature = SigmaTemperature(startTemperature, annealingStep) else: raise RuntimeError('Temperature missing in request!') criterion = None if 'crit' in parameters: from pytom.cluster.mcoACStructures import MetropolisCriterion, ThresholdAcceptance criterion = parameters['crit'] if criterion == 'metropolis': criterion = MetropolisCriterion() elif criterion == 'threshold': criterion = ThresholdAcceptance() else: raise RuntimeError('Criterion missing in request!') if 'refin' in parameters: localSearchIncrement = float(parameters['refin']) else: raise RuntimeError('Number of refinement rounds missing in request!') from pytom.cluster.mcoACStructures import MCOACJob job = MCOACJob(particleList, destination, mask, score, preprocessing, wedgeInfo, binning, sampleInfo, numberClasses, temperature, criterion, convergence, localSearchIncrement, symmetry=None) jobXMLFile = '' if 'jobFile' in parameters: jobXMLFile = parameters['jobFile'] job.toXMLFile(jobXMLFile) jobRunFile = jobXMLFile[0:-3] createRunscripts(jobRunFile + 'sh', jobXMLFile) return FileMessage('MCOACJob', jobXMLFile, 'created')
class CTFCorrectionJob(PyTomClass): """For the worker to actually run. """ def __init__(self, pl=None, ctf_conv_pl=None, ref=None, mask=None, peak_offset=0, sample_info=None, bw_range=None, freq=None, dest='.', max_iter=10, r_score=False, weighting=False, bfactor=None, sum_ctf_sqr=None): self.particleList = pl self.ctf_conv_pl = ctf_conv_pl if ref is None: self.reference = [] else: self.reference = ref self.mask = mask self.peak_offset = peak_offset self.sampleInformation = sample_info self.bw_range = bw_range self.freq = freq self.destination = dest self.max_iter = max_iter self.r_score = r_score self.weighting = weighting self.bfactor = bfactor self.sum_ctf_sqr = sum_ctf_sqr def fromXML(self, xmlObj): from lxml.etree import _Element if xmlObj.__class__ != _Element: raise Exception('You must provide a valid XML object.') if xmlObj.tag == "CTFCorrectionJob": jobDescription = xmlObj else: jobDescription = xmlObj.xpath('CTFCorrectionJob') if len(jobDescription) == 0: raise Exception("This XML is not a CTFCorrectionJob.") jobDescription = jobDescription[0] from pytom.basic.structures import ParticleList, Reference, Mask, SampleInformation particleList_element = jobDescription.xpath('ParticleList')[0] pl = ParticleList('.') pl.fromXML(particleList_element) self.particleList = pl self.reference = [] r = jobDescription.xpath('Reference') for ref_obj in r: ref = Reference('') ref.fromXML(ref_obj) self.reference.append(ref) m = jobDescription.xpath('Mask')[0] self.mask = Mask('') self.mask.fromXML(m) try: si = jobDescription.xpath('SampleInformation')[0] self.sampleInformation = SampleInformation() self.sampleInformation.fromXML(si) except: self._sampleInformation = SampleInformation() self.ctf_conv_pl = jobDescription.get('CTFConvolutedParticleList') self.peak_offset = int(jobDescription.get('PeakOffset')) self.bw_range = [ int(i) for i in jobDescription.get('BandwidthRange')[1:-1].split(',') ] self.freq = int(jobDescription.get('Frequency')) self.destination = jobDescription.get('Destination') self.max_iter = int(jobDescription.get('MaxIterations')) self.r_score = jobDescription.get('RScore') == 'True' self.weighting = jobDescription.get('WeightedAverage') == 'True' self.bfactor = jobDescription.get('BFactor') self.sum_ctf_sqr = jobDescription.get('CTFSquared') def toXML(self): from lxml import etree jobElement = etree.Element("CTFCorrectionJob") jobElement.append(self.particleList.toXML()) for ref in self.reference: jobElement.append(ref.toXML()) jobElement.append(self.mask.toXML()) jobElement.append(self.sampleInformation.toXML()) jobElement.set("CTFConvolutedParticleList", self.ctf_conv_pl) jobElement.set("PeakOffset", str(self.peak_offset)) jobElement.set("BandwidthRange", str(self.bw_range)) jobElement.set("Frequency", str(self.freq)) jobElement.set("Destination", self.destination) jobElement.set("MaxIterations", str(self.max_iter)) jobElement.set("RScore", str(self.r_score)) jobElement.set("WeightedAverage", str(self.weighting)) jobElement.set("BFactor", str(self.bfactor)) jobElement.set("CTFSquared", str(self.sum_ctf_sqr)) return jobElement
def fromXML(self, xmlObj): # only rewrite this function from lxml.etree import _Element if xmlObj.__class__ != _Element: raise Exception('You must provide a valid XML object.') if xmlObj.tag == "FRMJob": # the name is not changed here! jobDescription = xmlObj else: jobDescription = xmlObj.xpath('FRMJob') if len(jobDescription) == 0: raise Exception("This XML is not a FRMJob.") jobDescription = jobDescription[0] from pytom.basic.structures import Reference, Mask, SampleInformation, MultiSymmetries particleList_element = jobDescription.xpath('ParticleListSet')[0] pl = ParticleListSet() pl.fromXML(particleList_element) self.particleList = pl # here i still use the original name! self.reference = [] r = jobDescription.xpath('Reference') for ref_obj in r: ref = Reference('') ref.fromXML(ref_obj) self.reference.append(ref) m = jobDescription.xpath('Mask')[0] self.mask = Mask('') self.mask.fromXML(m) try: si = jobDescription.xpath('SampleInformation')[0] self.sampleInformation = SampleInformation() self.sampleInformation.fromXML(si) except: self.sampleInformation = SampleInformation() try: syms = jobDescription.xpath('MultiSymmetries')[0] self.symmetries = MultiSymmetries() self.symmetries.fromXML(syms) except: self.symmetries = MultiSymmetries() self.peak_offset = int(jobDescription.get('PeakOffset')) self.bw_range = [ int(i) for i in jobDescription.get('BandwidthRange')[1:-1].split(',') ] self.freq = int(jobDescription.get('Frequency')) self.destination = jobDescription.get('Destination') self.max_iter = int(jobDescription.get('MaxIterations')) self.r_score = jobDescription.get('RScore') == 'True' self.weighting = jobDescription.get('WeightedAverage') == 'True' self.bfactor = jobDescription.get('BFactor') if jobDescription.get('AdaptiveResolution'): adaptive_resolution = jobDescription.get('AdaptiveResolution') if adaptive_resolution == '+1': self.adaptive_res = False # always increase by 1 else: self.adaptive_res = float(adaptive_resolution) else: self.adaptive_res = 0.0 # default, if not specified if jobDescription.get('FSC'): self.fsc_criterion = float(jobDescription.get('FSC')) else: self.fsc_criterion = 0.5 # default value
def interpretRequestParameters(parameters): """ interpretRequestParameters """ from pytom.basic.structures import ParticleList, SampleInformation, Reference, Mask, Wedge, PointSymmetry from pytom.alignment.preprocessing import Preprocessing from pytom.frontend.serverpages.serverMessages import FileMessage particleList = ParticleList('.') if 'plXML' in parameters: particleList.fromXMLFile(parameters['plXML']) elif 'plDIR' in parameters: particleList = ParticleList(parameters['plDIR']) particleList.loadDirectory() else: raise RuntimeError('ParticleList parameter missing in request!') sampleInfo = SampleInformation() if 'pixSize' in parameters: sampleInfo.setPixelSize(parameters['pixSize']) else: raise RuntimeError('Pixelsize parameter missing in request!') if 'partDia' in parameters: sampleInfo.setParticleDiameter(parameters['partDia']) else: raise RuntimeError('Particle diameter missing in request!') reference = '' if 'ref' in parameters: reference = Reference(parameters['ref']) else: raise RuntimeError('Reference parameter missing in request!') if 'mask' in parameters: mask = Mask(parameters['mask']) else: raise RuntimeError('Mask parameter missing in request!') angles = None if 'sampling' in parameters: if parameters['sampling'] == 'GLOBAL': from pytom.angles.globalSampling import GlobalSampling if 'angFile' in parameters: angles = GlobalSampling(parameters['angFile']) else: raise RuntimeError('Angle file missing in request!') else: from pytom.angles.localSampling import LocalSampling if 'angStart' in parameters: startIncrement = int(parameters['angStart']) else: raise RuntimeError('Angle start missing in request!') if 'angShells' in parameters: shells = int(parameters['angShells']) else: raise RuntimeError('Angle shells missing in request!') if 'angInc' in parameters: shellIncrement = int(parameters['angInc']) else: raise RuntimeError('Angle increment missing in request!') angles = LocalSampling(shells=shells, increment=startIncrement) else: raise RuntimeError('Sampling completely missing in request!') if not 'lowestF' in parameters: raise RuntimeError('Lowest frequency parameter missing in request!') if not 'highestF' in parameters: raise RuntimeError('Highest frequency parameter missing in request!') if not 'filtSm' in parameters: raise RuntimeError('Filter smooth parameter missing in request!') preprocessing = Preprocessing(float(parameters['lowestF']), float(parameters['highestF']), float(parameters['filtSm'])) adaptive = True if 'adapt' in parameters: fscCriterion = 0.5 resOffset = 0.1 angleFactor = 0.5 adaptive = parameters['adapt'] == 'ON' if parameters['adapt'] == 'ON': if 'adResC' in parameters: fscCriterion = float(parameters['adResC']) else: raise RuntimeError('Resolution criterion missing in request!') if 'adResOf' in parameters: resOffset = parameters['adResOf'] else: raise RuntimeError( 'Resolution offset parameter missing in request!') if 'angFac' in parameters: angleFactor = float(parameters['angFac']) else: raise RuntimeError( 'Angular factor parameter missing in request!') else: raise RuntimeError('Adaptive parameter missing in request!') score = None if 'score' in parameters: if parameters['score'] == 'xcf': from pytom.score.score import xcfScore as scoreClass elif parameters['score'] == 'nxcf': from pytom.score.score import nxcfScore as scoreClass elif parameters['score'] == 'flcf': from pytom.score.score import FLCFScore as scoreClass score = scoreClass() else: raise RuntimeError('Score parameter missing in request!') if 'pkPriRad' in parameters: radius = float(parameters['pkPriRad']) else: raise RuntimeError('Peak distance parameter missing in request!') if 'pkSmooth' in parameters: smooth = float(parameters['pkSmooth']) else: raise RuntimeError('Peak distance smooth missing in request!') score.setPeakPrior(radius=radius, smooth=smooth) if 'iter' in parameters: iterations = int(parameters['iter']) else: raise RuntimeError('Number of iterations missing in request!') if 'binning' in parameters: binning = int(parameters['binning']) else: raise RuntimeError('Scaling parameter missing in request!') if 'dest' in parameters: destination = parameters['dest'] else: raise RuntimeError('Destination parameter missing in request!') from pytom.alignment.ExMaxAlignment import ExMaxJob job = ExMaxJob(particleList, destination, reference, score, angles, mask, PointSymmetry(1), 1, iterations, preprocessing, -1, binning, sampleInfo, fscCriterion, adaptive, resOffset, angleFactor) #print job jobXMLFile = '' if 'jobFile' in parameters: jobXMLFile = parameters['jobFile'] job.toXMLFile(jobXMLFile) if jobXMLFile[-4:] == '.xml': jobRunFile = jobXMLFile[0:-4] else: jobRunFile = jobXMLFile createRunscripts(jobRunFile + '.sh', jobXMLFile) return FileMessage('AlignmentJob', jobXMLFile, 'created')