def test_VQVAE(self): model = models.VQVAE(in_channels=3, out_channels=3, hidden_channels=2, residual_hidden_channels=1, n_residual_blocks=1, n_embeddings=2, embedding_dim=2) self._smoke_test(model, in_channels=3, test_sampling=False)
def reproduce(n_epochs=457, batch_size=128, log_dir="/tmp/run", device="cuda", debug_loader=None): """Training script with defaults to reproduce results. The code inside this function is self contained and can be used as a top level training script, e.g. by copy/pasting it into a Jupyter notebook. Args: n_epochs: Number of epochs to train for. batch_size: Batch size to use for training and evaluation. log_dir: Directory where to log trainer state and TensorBoard summaries. device: Device to train on (either 'cuda' or 'cpu'). debug_loader: Debug DataLoader which replaces the default training and evaluation loaders if not 'None'. Do not use unless you're writing unit tests. """ from torch import optim from torch.nn import functional as F from torch.optim import lr_scheduler from torch.utils import data from torchvision import datasets from torchvision import transforms from pytorch_generative import trainer from pytorch_generative import models transform = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.4914, 0.4822, 0.4465), (0.2023, 0.1994, 0.2010)), ]) train_loader = data.DataLoader( datasets.CIFAR10("tmp/data", train=True, download=True, transform=transform), batch_size=batch_size, shuffle=True, pin_memory=True, num_workers=2, ) test_loader = data.DataLoader( datasets.CIFAR10("tmp/data", train=False, download=True, transform=transform), batch_size=batch_size, pin_memory=True, num_workers=2, ) model = models.VQVAE( in_channels=3, out_channels=3, hidden_channels=128, residual_channels=32, n_residual_blocks=2, n_embeddings=512, embedding_dim=64, ) optimizer = optim.Adam(model.parameters(), lr=2e-4) scheduler = lr_scheduler.MultiplicativeLR(optimizer, lr_lambda=lambda _: 0.999977) def loss_fn(x, _, preds): preds, vq_loss = preds recon_loss = F.mse_loss(preds, x) loss = recon_loss + vq_loss return { "vq_loss": vq_loss, "reconstruction_loss": recon_loss, "loss": loss, } model_trainer = trainer.Trainer( model=model, loss_fn=loss_fn, optimizer=optimizer, train_loader=train_loader, eval_loader=test_loader, lr_scheduler=scheduler, log_dir=log_dir, device=device, ) model_trainer.interleaved_train_and_eval(n_epochs)