def main(): global global_step config = load_config() set_seed(config) setup_cudnn(config) epoch_seeds = np.random.randint(np.iinfo(np.int32).max // 2, size=config.scheduler.epochs) if config.train.distributed: dist.init_process_group(backend=config.train.dist.backend, init_method=config.train.dist.init_method, rank=config.train.dist.node_rank, world_size=config.train.dist.world_size) torch.cuda.set_device(config.train.dist.local_rank) output_dir = pathlib.Path(config.train.output_dir) if get_rank() == 0: if not config.train.resume and output_dir.exists(): raise RuntimeError( f'Output directory `{output_dir.as_posix()}` already exists') output_dir.mkdir(exist_ok=True, parents=True) if not config.train.resume: save_config(config, output_dir / 'config.yaml') save_config(get_env_info(config), output_dir / 'env.yaml') diff = find_config_diff(config) if diff is not None: save_config(diff, output_dir / 'config_min.yaml') logger = create_logger(name=__name__, distributed_rank=get_rank(), output_dir=output_dir, filename='log.txt') logger.info(config) logger.info(get_env_info(config)) train_loader, val_loader = create_dataloader(config, is_train=True) model = create_model(config) macs, n_params = count_op(config, model) logger.info(f'MACs : {macs}') logger.info(f'#params: {n_params}') optimizer = create_optimizer(config, model) model, optimizer = apex.amp.initialize(model, optimizer, opt_level=config.train.precision) model = apply_data_parallel_wrapper(config, model) scheduler = create_scheduler(config, optimizer, steps_per_epoch=len(train_loader)) checkpointer = Checkpointer(model, optimizer=optimizer, scheduler=scheduler, save_dir=output_dir, save_to_disk=get_rank() == 0) start_epoch = config.train.start_epoch scheduler.last_epoch = start_epoch if config.train.resume: checkpoint_config = checkpointer.resume_or_load('', resume=True) global_step = checkpoint_config['global_step'] start_epoch = checkpoint_config['epoch'] config.defrost() config.merge_from_other_cfg(ConfigNode(checkpoint_config['config'])) config.freeze() elif config.train.checkpoint != '': checkpoint = torch.load(config.train.checkpoint, map_location='cpu') if isinstance(model, (nn.DataParallel, nn.parallel.DistributedDataParallel)): model.module.load_state_dict(checkpoint['model']) else: model.load_state_dict(checkpoint['model']) if get_rank() == 0 and config.train.use_tensorboard: tensorboard_writer = create_tensorboard_writer( config, output_dir, purge_step=config.train.start_epoch + 1) tensorboard_writer2 = create_tensorboard_writer( config, output_dir / 'running', purge_step=global_step + 1) else: tensorboard_writer = DummyWriter() tensorboard_writer2 = DummyWriter() train_loss, val_loss = create_loss(config) if (config.train.val_period > 0 and start_epoch == 0 and config.train.val_first): validate(0, config, model, val_loss, val_loader, logger, tensorboard_writer) for epoch, seed in enumerate(epoch_seeds[start_epoch:], start_epoch): epoch += 1 np.random.seed(seed) train(epoch, config, model, optimizer, scheduler, train_loss, train_loader, logger, tensorboard_writer, tensorboard_writer2) if config.train.val_period > 0 and (epoch % config.train.val_period == 0): validate(epoch, config, model, val_loss, val_loader, logger, tensorboard_writer) tensorboard_writer.flush() tensorboard_writer2.flush() if (epoch % config.train.checkpoint_period == 0) or ( epoch == config.scheduler.epochs): checkpoint_config = { 'epoch': epoch, 'global_step': global_step, 'config': config.as_dict(), } checkpointer.save(f'checkpoint_{epoch:05d}', **checkpoint_config) tensorboard_writer.close() tensorboard_writer2.close()
def main(): global global_step config = load_config() set_seed(config) setup_cudnn(config) # np.iinfo(np_type).max: machine limit (upper bound) of the this type # every epoch will have a specific epoch seed epoch_seeds = np.random.randint(np.iinfo(np.int32).max // 2, size=config.scheduler.epochs) if config.train.distributed: dist.init_process_group(backend=config.train.dist.backend, init_method=config.train.dist.init_method, rank=config.train.dist.node_rank, world_size=config.train.dist.world_size) torch.cuda.set_device(config.train.dist.local_rank) output_dir = pathlib.Path(config.train.output_dir) if get_rank() == 0: if not config.train.resume and output_dir.exists(): raise RuntimeError( f'Output directory `{output_dir.as_posix()}` already exists') output_dir.mkdir(exist_ok=True, parents=True) if not config.train.resume: # if we need to resume training, current config, environment info and the difference between # the current and default config will be saved. save_config(config, output_dir / 'config.yaml') save_config(get_env_info(config), output_dir / 'env.yaml') diff = find_config_diff(config) if diff is not None: save_config(diff, output_dir / 'config_min.yaml') logger = create_logger(name=__name__, distributed_rank=get_rank(), output_dir=output_dir, filename='log.txt') logger.info(config) logger.info(get_env_info(config)) train_loader, val_loader = create_dataloader(config, is_train=True) model = create_model(config) # Multiply-and-ACcumulate(MAC): ops macs, n_params = count_op(config, model) logger.info(f'MACs : {macs}') logger.info(f'#params: {n_params}') # creating optimizer: SGD with nesterov momentum, adam, amsgrad, adabound, adaboundw or lars. optimizer = create_optimizer(config, model) # some AMP(Automatic mixed precision) settings if config.device != 'cpu': model, optimizer = apex.amp.initialize( model, optimizer, opt_level=config.train.precision) # create data parallel model or distributed data model = apply_data_parallel_wrapper(config, model) # set up scheduler and warm up scheduler # steps per epoch: how many batches in an epoch scheduler = create_scheduler(config, optimizer, steps_per_epoch=len(train_loader)) # create checkponit, do ot use torch's default checkpoint saver because it can't save scheduler checkpointer = Checkpointer(model, optimizer=optimizer, scheduler=scheduler, save_dir=output_dir, save_to_disk=get_rank() == 0) start_epoch = config.train.start_epoch # last_epoch is used to resume training, here normally we should start from config.train.start_epoch scheduler.last_epoch = start_epoch # The resume training supports multiple modes: # 1. resume = True, loading model from the last training checkpoint and following the global step and config # 2. resume = False, training checkpoint is specified, load checkpoint to cpu if config.train.resume: checkpoint_config = checkpointer.resume_or_load('', resume=True) global_step = checkpoint_config['global_step'] start_epoch = checkpoint_config['epoch'] config.defrost() config.merge_from_other_cfg(ConfigNode(checkpoint_config['config'])) config.freeze() elif config.train.checkpoint != '': checkpoint = torch.load(config.train.checkpoint, map_location='cpu') if isinstance(model, (nn.DataParallel, nn.parallel.DistributedDataParallel)): model.module.load_state_dict(checkpoint['model']) else: model.load_state_dict(checkpoint['model']) # Two TensorBoard writer: # First writer for this run of training(maybe it's resuming training) # Second writer follows the global steps and records the global run. if get_rank() == 0 and config.train.use_tensorboard: tensorboard_writer = create_tensorboard_writer( config, output_dir, purge_step=config.train.start_epoch + 1) tensorboard_writer2 = create_tensorboard_writer( config, output_dir / 'running', purge_step=global_step + 1) else: tensorboard_writer = DummyWriter() tensorboard_writer2 = DummyWriter() train_loss, val_loss = create_loss(config) if (config.train.val_period > 0 and start_epoch == 0 and config.train.val_first): # validate the model from epoch 0 validate(0, config, model, val_loss, val_loader, logger, tensorboard_writer) for epoch, seed in enumerate(epoch_seeds[start_epoch:], start_epoch): epoch += 1 np.random.seed(seed) train(epoch, config, model, optimizer, scheduler, train_loss, train_loader, logger, tensorboard_writer, tensorboard_writer2) if config.train.val_period > 0 and (epoch % config.train.val_period == 0): validate(epoch, config, model, val_loss, val_loader, logger, tensorboard_writer) tensorboard_writer.flush() tensorboard_writer2.flush() if (epoch % config.train.checkpoint_period == 0) or (epoch == config.scheduler.epochs): checkpoint_config = { 'epoch': epoch, 'global_step': global_step, 'config': config.as_dict(), } checkpointer.save(f'checkpoint_{epoch:05d}', **checkpoint_config) tensorboard_writer.close() tensorboard_writer2.close()