class TrainLoop:

    def __init__(self, trainer, multiple_trainloader_mode: str):
        self.trainer = trainer
        self.accumulated_loss = None
        self.warning_cache = WarningCache()
        self._teardown_already_run = False
        self.running_loss = TensorRunningAccum(window_length=20)
        self.automatic_optimization = True
        self._curr_step_result = None
        self._cur_grad_norm_dict = None
        self._multiple_trainloader_mode = multiple_trainloader_mode
        self._skip_backward = False
        self.trainer._multiple_trainloader_mode = multiple_trainloader_mode

    def on_trainer_init(
        self,
        max_epochs: Optional[int],
        min_epochs: Optional[int],
        max_steps: Optional[int],
        min_steps: Optional[int],
        num_sanity_val_steps: int,
    ) -> None:
        self.trainer.global_step = 0
        self.trainer.current_epoch = 0
        self.trainer.should_stop = False
        self.trainer._state = TrainerState.INITIALIZING

        self.trainer.total_batch_idx = 0
        self.trainer.batch_idx = 0
        self.trainer.num_training_batches = 0
        self.trainer.train_dataloader = None

        # If neither max_epochs or max_steps is set, then use existing default of max_epochs = 1000
        self.trainer.max_epochs = 1000 if (max_epochs is None and max_steps is None) else max_epochs
        # If neither min_epochs or min_steps is set, then use existing default of min_epochs = 1
        self.trainer.min_epochs = 1 if (min_epochs is None and min_steps is None) else min_epochs
        self.trainer.max_steps = max_steps
        self.trainer.min_steps = min_steps

        if num_sanity_val_steps == -1:
            self.trainer.num_sanity_val_steps = float("inf")
        else:
            self.trainer.num_sanity_val_steps = num_sanity_val_steps

    @property
    def num_optimizers(self):
        num_optimizers = len(self.get_optimizers_iterable())
        return num_optimizers

    def should_skip_training(self):
        should_by_max_steps = self.trainer.max_steps is not None and self.trainer.global_step >= self.trainer.max_steps
        should_by_epoch = self.trainer.max_epochs is not None and self.trainer.current_epoch >= self.trainer.max_epochs
        return should_by_max_steps or should_by_epoch or self.trainer.num_training_batches == 0

    def on_train_start(self):
        # hook
        self.trainer.call_hook("on_train_start")

    def setup_fit(self, model, train_dataloader=None, val_dataloaders=None, datamodule=None):
        # clean hparams
        if hasattr(model, "hparams"):
            parsing.clean_namespace(model.hparams)

        # links data to the trainer
        self.trainer.data_connector.attach_data(model, train_dataloader, val_dataloaders, datamodule)

        # check that model is configured correctly
        self.trainer.config_validator.verify_loop_configurations(model)

        # attach model log function to callback
        self.trainer.callback_connector.attach_model_logging_functions(model)

    def on_train_end(self):
        if self._teardown_already_run:
            return
        self._teardown_already_run = True

        # trigger checkpoint check. need to temporarily decrease the global step to avoid saving duplicates
        # when a checkpoint was saved at the last step
        self.trainer.global_step -= 1
        self.check_checkpoint_callback(should_update=True, is_last=True)
        self.trainer.global_step += 1

        # hook
        self.trainer.call_hook("on_train_end")

        # todo: TPU 8 cores hangs in flush with TensorBoard. Might do for all loggers.
        # It might be related to xla tensors blocked when moving the cpu
        # kill loggers
        if self.trainer.logger is not None:
            self.trainer.logger.finalize("success")

        # summarize profile results
        self.trainer.profiler.describe()

        # give accelerators a chance to finish
        self.trainer.accelerator.on_train_end()

        # reset bookkeeping
        self.trainer._running_stage = None

    def check_checkpoint_callback(self, should_update, is_last=False):
        # TODO bake this logic into the ModelCheckpoint callback
        if should_update and self.trainer.checkpoint_connector.has_trained:
            callbacks = self.trainer.checkpoint_callbacks

            if is_last and any(cb.save_last and cb.verbose for cb in callbacks):
                rank_zero_info("Saving latest checkpoint...")

            model = self.trainer.lightning_module

            for cb in callbacks:
                cb.on_validation_end(self.trainer, model)

    def check_early_stopping_callback(self, should_update):
        # TODO bake this logic into the EarlyStopping callback
        if should_update and self.trainer.checkpoint_connector.has_trained:
            callbacks = [c for c in self.trainer.callbacks if isinstance(c, EarlyStopping)]
            model = self.trainer.lightning_module

            for cb in callbacks:
                cb.on_validation_end(self.trainer, model)

    def on_train_epoch_start(self, epoch):

        # update training progress in trainer
        self.trainer.current_epoch = epoch

        model = self.trainer.lightning_module

        # reset train dataloader
        if epoch != 0 and self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_train_dataloader(model)

        # todo: specify the possible exception
        with suppress(Exception):
            # set seed for distributed sampler (enables shuffling for each epoch)
            self.trainer.train_dataloader.sampler.set_epoch(epoch)

        # changing gradient according accumulation_scheduler
        self.trainer.accumulation_scheduler.on_train_epoch_start(self.trainer, self.trainer.lightning_module)

        # stores accumulated grad fractions per batch
        self.accumulated_loss = TensorRunningAccum(window_length=self.trainer.accumulate_grad_batches)

        # hook
        self.trainer.call_hook("on_epoch_start")
        self.trainer.call_hook("on_train_epoch_start")

    def on_train_batch_end(self, epoch_output, batch_end_outputs, batch, batch_idx, dataloader_idx):
        batch_end_outputs = [opt_idx_out for opt_idx_out in batch_end_outputs if len(opt_idx_out)]

        processed_batch_end_outputs = TrainLoop._prepare_outputs(batch_end_outputs, batch_mode=True)

        # hook
        self.trainer.call_hook('on_train_batch_end', processed_batch_end_outputs, batch, batch_idx, dataloader_idx)
        self.trainer.call_hook('on_batch_end')

        # figure out what to track for epoch end
        self.track_epoch_end_reduce_metrics(epoch_output, batch_end_outputs)

        # reset batch logger internals
        self.trainer.logger_connector.on_train_batch_end()

    def reset_train_val_dataloaders(self, model):
        if self.trainer.train_dataloader is None or not self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_train_dataloader(model)

        if self.trainer.val_dataloaders is None and not self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_val_dataloader(model)

    def track_epoch_end_reduce_metrics(self, epoch_output, batch_end_outputs):

        # track the outputs to reduce at the end of the epoch
        for opt_idx, opt_outputs in enumerate(batch_end_outputs):
            sample_output = opt_outputs[-1]

            # decide if we need to reduce at the end of the epoch automatically
            auto_reduce_tng_result = isinstance(sample_output, Result) and sample_output.should_reduce_on_epoch_end
            hook_overridden = (
                is_overridden("training_epoch_end", model=self.trainer.lightning_module)
                or is_overridden("on_train_epoch_end", model=self.trainer.lightning_module)
            )

            # only track when a) it needs to be autoreduced OR b) the user wants to manually reduce on epoch end
            if not (hook_overridden or auto_reduce_tng_result):
                continue

            # with 1 step (no tbptt) don't use a sequence at epoch end
            if isinstance(opt_outputs, list) and len(opt_outputs) == 1 and not isinstance(opt_outputs[0], Result):
                opt_outputs = opt_outputs[0]

            epoch_output[opt_idx].append(opt_outputs)

    def get_optimizers_iterable(self):
        """
        Generates an iterable with (idx, optimizer) for each optimizer.
        """
        if not self.trainer.optimizer_frequencies:
            # call training_step once per optimizer
            return list(enumerate(self.trainer.optimizers))

        optimizer_freq_cumsum = np.cumsum(self.trainer.optimizer_frequencies)
        optimizers_loop_length = optimizer_freq_cumsum[-1]
        current_place_in_loop = self.trainer.total_batch_idx % optimizers_loop_length

        # find optimzier index by looking for the first {item > current_place} in the cumsum list
        opt_idx = np.argmax(optimizer_freq_cumsum > current_place_in_loop)
        return [[opt_idx, self.trainer.optimizers[opt_idx]]]

    def on_after_backward(self, training_step_output, batch_idx, untouched_loss):
        training_step_output.detach()

        # insert after step hook
        self.trainer.call_hook("on_after_backward")

        # when in dev debugging track the losses
        self.trainer.dev_debugger.track_train_loss_history(batch_idx, untouched_loss.detach())

    def _check_training_step_output(self, training_step_output):
        if isinstance(training_step_output, torch.Tensor) and not self.automatic_optimization:
            if training_step_output.grad_fn is None:
                # TODO: Find why - RuntimeError: Expected to mark a variable ready only once ...
                raise MisconfigurationException("In manual optimization, `training_step` should not return a Tensor")

    def training_step(self, split_batch, batch_idx, opt_idx, hiddens):
        # give the PL module a result for logging
        model_ref = self.trainer.lightning_module

        with self.trainer.profiler.profile("model_forward"):
            args = self.build_train_args(split_batch, batch_idx, opt_idx, hiddens)

            # manually capture logged metrics
            model_ref._current_fx_name = 'training_step'
            model_ref._results = Result()
            with self.trainer.profiler.profile("training_step"):
                training_step_output = self.trainer.accelerator.training_step(args)
                self.trainer.accelerator.post_training_step()

            self.trainer.logger_connector.cache_logged_metrics()

            self._check_training_step_output(training_step_output)

            training_step_output = self.trainer.call_hook("training_step_end", training_step_output)

            training_step_output_for_epoch_end, training_step_output = self._process_training_step_output(
                training_step_output, split_batch
            )
            if training_step_output_for_epoch_end is None:
                return

        # enable empty loss when using manual opt
        closure_loss = None
        untouched_loss = None

        if self.automatic_optimization:
            # accumulate loss. if accumulate_grad_batches==1, no effect
            closure_loss = training_step_output.minimize / self.trainer.accumulate_grad_batches

            # the loss will get scaled for amp. avoid any modifications to it
            untouched_loss = closure_loss.detach().clone()

        # result
        result = AttributeDict(
            closure_loss=closure_loss,
            loss=untouched_loss,
            training_step_output=training_step_output,
            training_step_output_for_epoch_end=training_step_output_for_epoch_end,
        )
        return result

    def _process_training_step_output(self, training_step_output, split_batch):
        training_step_output_for_epoch_end = training_step_output

        # enable validation_step return None
        if training_step_output_for_epoch_end is None:
            return None, None

        result = self.trainer.lightning_module._results

        loss = None
        hiddens = None
        result["extra"] = {}

        # handle dict return
        if isinstance(training_step_output, dict):
            loss = training_step_output.pop("loss", None)
            hiddens = training_step_output.pop("hiddens", None)
            if hiddens is not None:
                hiddens = hiddens.detach()
            result["extra"] = training_step_output

        # handle scalar return
        elif isinstance(training_step_output, torch.Tensor):
            loss = training_step_output

        # map to results under the hood
        result.minimize = loss
        self.trainer.hiddens = hiddens

        # track batch for manual reduction with result
        result.track_batch_size(len(split_batch))

        # track metrics without grads for epoch reduction
        training_step_output_for_epoch_end = copy(result)
        training_step_output_for_epoch_end = training_step_output_for_epoch_end.detach()
        if self.trainer.move_metrics_to_cpu:
            training_step_output_for_epoch_end = training_step_output_for_epoch_end.cpu()

        return training_step_output_for_epoch_end, result

    @staticmethod
    def _prepare_outputs(
        outputs: List[List[List[Result]]],
        batch_mode: bool,
    ) -> Union[List[List[List[Dict]]], List[List[Dict]], List[Dict], Dict]:
        """
        Extract required information from batch or epoch end results.

        Args:
            outputs: A 3-dimensional list of ``Result`` objects with dimensions:
                [optimizer outs][batch outs][tbptt steps].

            batch_mode: If True, ignore the batch output dimension.

        Returns:
            The cleaned outputs with ``Result`` objects converted to dictionaries. All list dimensions of size one will
            be collapsed.
        """
        processed_outputs = []
        for opt_outputs in outputs:
            # handle an edge case where an optimizer output is the empty list
            if len(opt_outputs) == 0:
                continue

            processed_batch_outputs = []

            if batch_mode:
                opt_outputs = [opt_outputs]

            for batch_outputs in opt_outputs:
                processed_tbptt_outputs = []

                for tbptt_output in batch_outputs:
                    out = tbptt_output.extra
                    out['loss'] = tbptt_output.minimize
                    processed_tbptt_outputs.append(out)

                # if there was only one tbptt step then we can collapse that dimension
                if len(processed_tbptt_outputs) == 1:
                    processed_tbptt_outputs = processed_tbptt_outputs[0]
                processed_batch_outputs.append(processed_tbptt_outputs)

            # batch_outputs should be just one dict (or a list of dicts if using tbptt) per optimizer
            if batch_mode:
                processed_batch_outputs = processed_batch_outputs[0]
            processed_outputs.append(processed_batch_outputs)

        # if there is only one optimiser then we collapse that dimension
        if len(processed_outputs) == 1:
            processed_outputs = processed_outputs[0]
        return processed_outputs

    def optimizer_step(self, optimizer, opt_idx, batch_idx, train_step_and_backward_closure):
        model_ref = self.trainer.lightning_module

        is_lbfgs = isinstance(optimizer, torch.optim.LBFGS)
        using_native_amp = self.trainer.amp_backend == AMPType.NATIVE

        # native amp + lbfgs is a no go right now
        if using_native_amp and is_lbfgs:
            raise MisconfigurationException(
                'native PyTorch amp and lbfgs are not compatible.'
                ' To request, please file a Github issue in PyTorch and tag @mcarilli'
            )

        # wraps into LightningOptimizer only for running step
        optimizer = LightningOptimizer._to_lightning_optimizer(optimizer, self.trainer, opt_idx)

        # model hook
        model_ref.optimizer_step(
            self.trainer.current_epoch,
            batch_idx,
            optimizer,
            opt_idx,
            train_step_and_backward_closure,
            on_tpu=self.trainer._device_type == DeviceType.TPU and _TPU_AVAILABLE,
            using_native_amp=using_native_amp,
            using_lbfgs=is_lbfgs,
        )

    def on_before_zero_grad(self, optimizer):
        self.trainer.call_hook('on_before_zero_grad', optimizer)

    def optimizer_zero_grad(self, batch_idx, optimizer, opt_idx):
        self.trainer.accelerator.optimizer_zero_grad(self.trainer.current_epoch, batch_idx, optimizer, opt_idx)

    def track_and_norm_grad(self, optimizer):
        # track gradient norms
        grad_norm_dic = self._track_gradient_norm()

        # clip gradients
        self.trainer.accelerator.clip_gradients(
            optimizer, self.trainer.gradient_clip_val, gradient_clip_algorithm=self.trainer.gradient_clip_algorithm
        )
        self._cur_grad_norm_dict = grad_norm_dic

    def _track_gradient_norm(self):
        grad_norm_dict = {}
        if (self.trainer.global_step + 1) % self.trainer.log_every_n_steps == 0:
            if float(self.trainer.track_grad_norm) > 0:
                model = self.trainer.lightning_module
                grad_norm_dict = model.grad_norm(self.trainer.track_grad_norm)
        return grad_norm_dict

    def tbptt_split_batch(self, batch):
        splits = [batch]
        if self.trainer.truncated_bptt_steps is not None:
            model_ref = self.trainer.lightning_module
            with self.trainer.profiler.profile("tbptt_split_batch"):
                splits = model_ref.tbptt_split_batch(batch, self.trainer.truncated_bptt_steps)
        return splits

    def run_training_epoch(self):
        # modify dataloader if needed (ddp, etc...)
        train_dataloader = self.trainer.accelerator.process_dataloader(self.trainer.train_dataloader)

        # track epoch output
        epoch_output = [[] for _ in range(self.num_optimizers)]

        train_dataloader = self.trainer.data_connector.get_profiled_train_dataloader(train_dataloader)
        dataloader_idx = 0
        val_loop_called = False

        for batch_idx, (batch, is_last_batch) in train_dataloader:

            self.trainer.batch_idx = batch_idx
            self.trainer.is_last_batch = is_last_batch

            # ------------------------------------
            # TRAINING_STEP + TRAINING_STEP_END
            # ------------------------------------
            with self.trainer.profiler.profile("run_training_batch"):
                batch_output = self.run_training_batch(batch, batch_idx, dataloader_idx)

            # when returning -1 from train_step, we end epoch early
            if batch_output.signal == -1:
                break

            # hook
            # TODO: add outputs to batches
            self.on_train_batch_end(
                epoch_output,
                batch_output.training_step_output_for_epoch_end,
                batch,
                batch_idx,
                dataloader_idx,
            )

            # -----------------------------------------
            # SAVE METRICS TO LOGGERS
            # -----------------------------------------
            self.trainer.logger_connector.log_train_step_metrics(batch_output)

            # -----------------------------------------
            # VALIDATE IF NEEDED + CHECKPOINT CALLBACK
            # -----------------------------------------
            should_check_val = self.should_check_val_fx(batch_idx, is_last_batch)
            if should_check_val:
                self.trainer.validating = True
                self.trainer.run_evaluation()
                self.trainer.training = True
                val_loop_called = True

            # -----------------------------------------
            # SAVE LOGGERS (ie: Tensorboard, etc...)
            # -----------------------------------------
            self.save_loggers_on_train_batch_end()

            # update LR schedulers
            monitor_metrics = deepcopy(self.trainer.logger_connector.callback_metrics)
            self.update_train_loop_lr_schedulers(monitor_metrics=monitor_metrics)
            self.trainer.checkpoint_connector.has_trained = True

            # max steps reached, end training
            if (
                self.trainer.max_steps is not None and self.trainer.max_steps == self.trainer.global_step + 1
                and self._accumulated_batches_reached()
            ):
                break

            # end epoch early
            # stop when the flag is changed or we've gone past the amount
            # requested in the batches
            if self.trainer.should_stop:
                break

            self.trainer.total_batch_idx += 1

            # stop epoch if we limited the number of training batches
            if self._num_training_batches_reached(is_last_batch):
                break

            # progress global step according to grads progress
            self.increment_accumulated_grad_global_step()

        # handle epoch_output on epoch end
        self.on_train_epoch_end(epoch_output)

        # log epoch metrics
        self.trainer.logger_connector.log_train_epoch_end_metrics(epoch_output)

        should_check_val = self.should_check_val_fx(batch_idx, is_last_batch, on_epoch=True)
        should_skip_eval = self.trainer.evaluation_loop.should_skip_evaluation(self.trainer.num_val_batches)
        should_train_only = self.trainer.disable_validation or should_skip_eval

        # update epoch level lr_schedulers if no val loop outside train loop is triggered
        if (val_loop_called and not should_check_val) or should_train_only:
            self.trainer.optimizer_connector.update_learning_rates(interval='epoch')

        if should_train_only:
            self.check_checkpoint_callback(True)
            self.check_early_stopping_callback(True)

        if should_check_val:
            self.trainer.validating = True
            self.trainer.run_evaluation(on_epoch=True)
            self.trainer.training = True

        # increment the global step once
        # progress global step according to grads progress
        self.increment_accumulated_grad_global_step()

    def on_train_epoch_end(self, epoch_output: List[List[List[Result]]]) -> None:
        # inform logger the batch loop has finished
        self.trainer.logger_connector.on_train_epoch_end()

        # prepare epoch output
        processed_epoch_output = TrainLoop._prepare_outputs(epoch_output, batch_mode=False)

        # get the model and call model.training_epoch_end
        model = self.trainer.lightning_module

        if is_overridden('training_epoch_end', model=model):
            # run training_epoch_end
            # refresh the result for custom logging at the epoch level
            model._current_fx_name = 'training_epoch_end'

            # lightningmodule hook
            training_epoch_end_output = model.training_epoch_end(processed_epoch_output)

            if training_epoch_end_output is not None:
                raise MisconfigurationException(
                    'training_epoch_end expects a return of None. '
                    'HINT: remove the return statement in training_epoch_end'
                )

            # capture logging
            self.trainer.logger_connector.cache_logged_metrics()

        # call train epoch end hooks
        self.trainer.call_hook('on_train_epoch_end', processed_epoch_output)
        self.trainer.call_hook('on_epoch_end')

    def run_training_batch(self, batch, batch_idx, dataloader_idx):
        # track grad norms
        grad_norm_dic = {}

        # bookkeeping
        self.trainer.hiddens = None

        optimizers = self.prepare_optimizers()

        # track all outputs across time and num of optimizers
        batch_outputs = [[] for _ in range(len(optimizers))]

        if batch is None:
            return AttributeDict(signal=0, grad_norm_dic=grad_norm_dic)

        # hook
        response = self.trainer.call_hook("on_batch_start")
        if response == -1:
            return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)

        # hook
        response = self.trainer.call_hook("on_train_batch_start", batch, batch_idx, dataloader_idx)
        if response == -1:
            return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)

        # lightning module hook
        splits = self.tbptt_split_batch(batch)

        for split_idx, split_batch in enumerate(splits):

            # create an iterable for optimizers and loop over them
            for opt_idx, optimizer in optimizers:

                # toggle model params + set info to logger_connector
                self.run_train_split_start(split_idx, split_batch, opt_idx, optimizer)

                if self.should_accumulate():
                    # For gradient accumulation

                    # -------------------
                    # calculate loss (train step + train step end)
                    # -------------------

                    # automatic_optimization=True: perform dpp sync only when performing optimizer_step
                    # automatic_optimization=False: don't block synchronization here
                    with self.block_ddp_sync_behaviour():
                        self.training_step_and_backward(
                            split_batch, batch_idx, opt_idx, optimizer, self.trainer.hiddens
                        )

                    batch_outputs = self._process_closure_result(
                        batch_outputs=batch_outputs,
                        opt_idx=opt_idx,
                    )

                # ------------------------------
                # BACKWARD PASS
                # ------------------------------
                # gradient update with accumulated gradients

                else:
                    if self.automatic_optimization:

                        def train_step_and_backward_closure():
                            result = self.training_step_and_backward(
                                split_batch, batch_idx, opt_idx, optimizer, self.trainer.hiddens
                            )
                            return None if result is None else result.loss

                        # optimizer step
                        self.optimizer_step(optimizer, opt_idx, batch_idx, train_step_and_backward_closure)

                    else:
                        self._curr_step_result = self.training_step(
                            split_batch, batch_idx, opt_idx, self.trainer.hiddens
                        )

                    if self._curr_step_result is None:
                        # user decided to skip optimization
                        # make sure to zero grad.
                        continue

                    batch_outputs = self._process_closure_result(
                        batch_outputs=batch_outputs,
                        opt_idx=opt_idx,
                    )

                    # todo: Properly aggregate grad_norm accros opt_idx and split_idx
                    grad_norm_dic = self._cur_grad_norm_dict
                    self._cur_grad_norm_dict = None

                    # update running loss + reset accumulated loss
                    self.update_running_loss()

        result = AttributeDict(
            signal=0,
            grad_norm_dic=grad_norm_dic,
            training_step_output_for_epoch_end=batch_outputs,
        )
        return result

    @contextmanager
    def block_ddp_sync_behaviour(self, should_block_sync: bool = False):
        """
        automatic_optimization = True
        Blocks ddp sync gradients behaviour on backwards pass.
        This is useful for skipping sync when accumulating gradients, reducing communication overhead

        automatic_optimization = False
        do not block ddp gradient sync when using manual optimization
        as gradients are needed within the training step

        Returns:
            context manager with sync behaviour off

        """
        if (
            isinstance(self.trainer.training_type_plugin, ParallelPlugin)
            and (self.automatic_optimization or should_block_sync)
        ):
            with self.trainer.training_type_plugin.block_backward_sync():
                yield None
        else:
            yield None

    def _process_closure_result(self, batch_outputs: list, opt_idx: int) -> list:
        opt_closure_result = self._curr_step_result

        if opt_closure_result is not None:

            # cache metrics
            self.trainer.logger_connector.cache_training_step_metrics(opt_closure_result)

            # check if loss or model weights are nan
            if self.trainer.terminate_on_nan:
                self._check_finite(opt_closure_result.loss)

            # track all the outputs across all steps
            batch_opt_idx = opt_idx if len(batch_outputs) > 1 else 0
            batch_outputs[batch_opt_idx].append(opt_closure_result.training_step_output_for_epoch_end)

            if self.automatic_optimization:
                # track total loss for logging (avoid mem leaks)
                self.accumulated_loss.append(opt_closure_result.loss)

        self._curr_step_result = None

        return batch_outputs

    def training_step_and_backward(self, split_batch, batch_idx, opt_idx, optimizer, hiddens):
        """Wrap forward, zero_grad and backward in a closure so second order methods work"""
        with self.trainer.profiler.profile("training_step_and_backward"):
            # lightning module hook
            result = self.training_step(split_batch, batch_idx, opt_idx, hiddens)
            self._curr_step_result = result

            if not self._skip_backward and self.automatic_optimization:
                is_first_batch_to_accumulate = batch_idx % self.trainer.accumulate_grad_batches == 0

                if is_first_batch_to_accumulate:
                    self.on_before_zero_grad(optimizer)
                    self.optimizer_zero_grad(batch_idx, optimizer, opt_idx)

                # backward pass
                if result is not None:
                    with self.trainer.profiler.profile("backward"):
                        self.backward(result, optimizer, opt_idx)

                    # hook - call this hook only
                    # when gradients have finished to accumulate
                    if not self.should_accumulate():
                        self.on_after_backward(result.training_step_output, batch_idx, result.loss)

                    # check if loss or model weights are nan
                    if self.trainer.terminate_on_nan:
                        self._check_finite(result.loss)

                else:
                    self.warning_cache.warn("training_step returned None if it was on purpose, ignore this warning...")

                if len(self.trainer.optimizers) > 1:
                    # revert back to previous state
                    self.trainer.lightning_module.untoggle_optimizer(opt_idx)

        return result

    def _check_finite(self, loss: torch.Tensor) -> None:
        if not torch.isfinite(loss).all():
            raise ValueError(f'The loss returned in `training_step` is {loss}.')
        model = self.trainer.lightning_module
        detect_nan_parameters(model)

    def backward(self, result, optimizer, opt_idx, *args, **kwargs):
        self.trainer.dev_debugger.track_event("backward_call")

        should_accumulate = self.should_accumulate()

        # backward can be called manually in the training loop
        if isinstance(result, torch.Tensor):
            self.trainer.accelerator.backward(result, optimizer, opt_idx, should_accumulate, *args, **kwargs)
        else:
            result.closure_loss = self.trainer.accelerator.backward(
                result.closure_loss, optimizer, opt_idx, should_accumulate, *args, **kwargs
            )

        if not self.should_accumulate():
            # track gradients
            self.track_and_norm_grad(optimizer=optimizer)

    def update_train_loop_lr_schedulers(self, monitor_metrics=None):
        num_accumulated_batches_reached = self._accumulated_batches_reached()
        num_training_batches_reached = self._num_training_batches_reached()

        if num_accumulated_batches_reached or num_training_batches_reached:
            # update lr
            self.trainer.optimizer_connector.update_learning_rates(interval="step", monitor_metrics=monitor_metrics)

    def increment_accumulated_grad_global_step(self):
        num_accumulated_batches_reached = self._accumulated_batches_reached()
        num_training_batches_reached = self._num_training_batches_reached()

        # progress global step according to grads progress
        if num_accumulated_batches_reached or num_training_batches_reached:
            self.trainer.global_step = self.trainer.accelerator.update_global_step(
                self.trainer.total_batch_idx, self.trainer.global_step
            )

    def _accumulated_batches_reached(self):
        return (self.trainer.batch_idx + 1) % self.trainer.accumulate_grad_batches == 0

    def _num_training_batches_reached(self, is_last_batch=False):
        return (self.trainer.batch_idx + 1) == self.trainer.num_training_batches or is_last_batch

    def should_accumulate(self):
        # checks if backward or backward + optimizer step (via closure)
        accumulation_done = self._accumulated_batches_reached()
        is_final_batch = self._num_training_batches_reached()
        return not (accumulation_done or is_final_batch)

    def should_check_val_fx(self, batch_idx, is_last_batch, on_epoch=False):
        # decide if we should run validation
        is_val_check_batch = (batch_idx + 1) % self.trainer.val_check_batch == 0
        is_val_check_epoch = (self.trainer.current_epoch + 1) % self.trainer.check_val_every_n_epoch == 0
        can_check_val = self.trainer.enable_validation and is_val_check_epoch
        is_last_batch_for_infinite_dataset = is_last_batch and self.trainer.val_check_batch == float("inf")
        epoch_end_val_check = (batch_idx + 1) % self.trainer.num_training_batches == 0

        should_check_val = ((is_val_check_batch and epoch_end_val_check) or self.trainer.should_stop
                            or is_last_batch_for_infinite_dataset
                            ) if on_epoch else (is_val_check_batch and not epoch_end_val_check)

        return should_check_val and can_check_val

    def build_train_args(self, batch, batch_idx, opt_idx, hiddens):
        # enable not needing to add opt_idx to training_step
        args = [batch, batch_idx]

        if len(self.trainer.optimizers) > 1:
            if self.trainer.has_arg("training_step", "optimizer_idx"):
                if not self.automatic_optimization:
                    self.warning_cache.warn(
                        "`training_step` hook signature has changed in v1.3."
                        " `optimizer_idx` argument has been removed in case of manual optimization. Support for"
                        " the old signature will be removed in v1.5", DeprecationWarning
                    )
                args.append(opt_idx)
            elif not self.trainer.has_arg("training_step", "optimizer_idx") and self.automatic_optimization:
                raise ValueError(
                    f"Your LightningModule defines {len(self.trainer.optimizers)} optimizers but"
                    ' `training_step` is missing the `optimizer_idx` argument.'
                )

        # pass hiddens if using tbptt
        if self.trainer.truncated_bptt_steps is not None:
            args.append(hiddens)

        return args

    def save_loggers_on_train_batch_end(self):
        # when loggers should save to disk
        should_flush_logs = self.trainer.logger_connector.should_flush_logs
        if should_flush_logs and self.trainer.is_global_zero and self.trainer.logger is not None:
            self.trainer.logger.save()

    def prepare_optimizers(self):
        # in manual optimization we loop over all optimizers at once
        optimizers = self.get_optimizers_iterable()
        if not self.automatic_optimization:
            optimizers = [optimizers[0]]
        return optimizers

    def run_train_split_start(self, split_idx, split_batch, opt_idx, optimizer):
        # set split_idx to trainer for tracking
        self.trainer.split_idx = split_idx

        # make sure only the gradients of the current optimizer's parameters are calculated
        # in the training step to prevent dangling gradients in multiple-optimizer setup.
        if self.automatic_optimization and len(self.trainer.optimizers) > 1:
            model = self.trainer.lightning_module
            model.toggle_optimizer(optimizer, opt_idx)

        # use to track metrics internally
        self.trainer.logger_connector.on_train_split_start(split_idx, opt_idx, split_batch)

    def update_running_loss(self):
        accumulated_loss = self.accumulated_loss.mean()

        if accumulated_loss is not None:
            # calculate running loss for display
            self.running_loss.append(self.accumulated_loss.mean() * self.trainer.accumulate_grad_batches)

        # reset for next set of accumulated grads
        self.accumulated_loss.reset()
standalone = os.getenv("PL_RUN_STANDALONE_TESTS", "0") == "1"
if standalone:

    stderr = StringIO()
    # recording
    with redirect_stderr(stderr):
        _warn("test1")
        _warn("test2", category=DeprecationWarning)

        rank_zero_warn("test3")
        rank_zero_warn("test4", category=DeprecationWarning)

        rank_zero_deprecation("test5")

        cache = WarningCache()
        cache.warn("test6")
        cache.deprecation("test7")

    output = stderr.getvalue()
    assert "test_warnings.py:30: UserWarning: test1" in output
    assert "test_warnings.py:31: DeprecationWarning: test2" in output

    assert "test_warnings.py:33: UserWarning: test3" in output
    assert "test_warnings.py:34: DeprecationWarning: test4" in output

    assert "test_warnings.py:36: LightningDeprecationWarning: test5" in output

    assert "test_warnings.py:39: UserWarning: test6" in output
    assert "test_warnings.py:40: LightningDeprecationWarning: test7" in output
Example #3
0
class PredictionEpochLoop(Loop):
    """Loop performing prediction on arbitrary sequentially used dataloaders."""
    def __init__(self) -> None:
        super().__init__()
        self.return_predictions: bool = False
        self.predictions: List[Any] = []
        self.current_batch_indices: List[int] = []
        self.batch_progress = Progress()

        self._dl_max_batches: Optional[int] = None
        self._num_dataloaders: Optional[int] = None
        self._warning_cache = WarningCache()
        self._all_batch_indices: List[int] = []

    @property
    def done(self) -> bool:
        """Ends prediction when the iteration count exceeds the total number of available batches"""
        return self.batch_progress.current.completed >= self._dl_max_batches

    @property
    def should_store_predictions(self) -> bool:
        """Whether the predictions should be stored for later usage (e.g. aggregation or returning)"""
        any_pred = any(cb.interval.on_epoch
                       for cb in self.trainer.prediction_writer_callbacks)
        return self.return_predictions or any_pred

    def connect(self, **kwargs: "Loop") -> None:
        raise NotImplementedError(
            f"{self.__class__.__name__} does not connect any child loops.")

    def reset(self) -> None:
        """Resets the loops internal state"""
        self._all_batch_indices: List[int] = []
        self.predictions: List[Any] = []
        self.batch_progress.current.reset()

    def on_run_start(self,
                     dataloader_iter: Iterator,
                     dataloader_idx: int,
                     dl_max_batches: int,
                     num_dataloaders: int,
                     return_predictions: bool = False) -> None:
        """
        Prepares the loops internal state

        Args:
            dataloader_iter: the iterator over the current dataloader
            dataloader_idx: the index of the current dataloader
            dl_max_batches: the maximum number of batches the current loader can produce
            num_dataloaders: the total number of dataloaders
            return_predictions: whether to return the obtained predictions
        """
        void(dataloader_iter, dataloader_idx)
        self._dl_max_batches = dl_max_batches
        self._num_dataloaders = num_dataloaders
        self.return_predictions = return_predictions

    def advance(self,
                dataloader_iter: Iterator,
                dataloader_idx: int,
                dl_max_batches: int,
                num_dataloaders: int,
                return_predictions: bool = False) -> None:
        """
        Runs one prediction step.

        Args:
            dataloader_iter: the iterator over the current dataloader
            dataloader_idx: the index of the current dataloader
            dl_max_batches: the maximum number of batches the current loader can produce
            num_dataloaders: the total number of dataloaders
            return_predictions: whether to return the obtained predictions
        """
        batch_idx, batch = next(dataloader_iter)
        if batch is None:
            raise StopIteration

        with self.trainer.profiler.profile("predict_batch_to_device"):
            batch = self.trainer.accelerator.batch_to_device(
                batch, dataloader_idx=dataloader_idx)

        self.batch_progress.increment_ready()

        with self.trainer.profiler.profile("predict_step"):
            self._predict_step(batch, batch_idx, dataloader_idx)

    def on_run_end(self) -> Tuple[Any, Any]:
        """Returns the predictions and the corresponding batch indices"""
        predictions = self.predictions
        all_batch_indices = self._all_batch_indices
        # free memory
        self.predictions = []
        self._all_batch_indices = []
        return predictions, all_batch_indices

    def _predict_step(self, batch: Any, batch_idx: int,
                      dataloader_idx: int) -> None:
        """Runs the actual predict step together with all the
        necessary bookkeeping and the hooks tied to the predict step.

        Args:
            batch: the current batch to run the prediction on
            batch_idx: the index of the current batch
            dataloader_idx: the index of the dataloader producing the current batch
        """
        # configure step_kwargs
        step_kwargs = self._build_kwargs(batch, batch_idx, dataloader_idx)

        # extract batch_indices and store them
        self._store_batch_indices(dataloader_idx)

        model_ref = self.trainer.lightning_module

        self.trainer.call_hook("on_predict_batch_start", batch, batch_idx,
                               dataloader_idx)

        self.batch_progress.increment_started()

        model_ref._current_fx_name = "predict_step"
        predictions = self.trainer.accelerator.predict_step(step_kwargs)

        self.batch_progress.increment_processed()

        if predictions is None:
            self._warning_cache.warn(
                "predict returned None if it was on purpose, ignore this warning..."
            )

        self.trainer.call_hook("on_predict_batch_end", predictions, batch,
                               batch_idx, dataloader_idx)

        self.batch_progress.increment_completed()

        if self.should_store_predictions:
            self.predictions.append(predictions)

    def _build_kwargs(self, batch: Any, batch_idx: int,
                      dataloader_idx: int) -> Dict[str, Any]:
        """
        Assembles the keyword arguments for the ``predict_step``

        Args:
            batch: the current batch to run the prediction on
            batch_idx: the index of the current batch
            dataloader_idx: the index of the dataloader producing the current batch

        Returns:
            the dictionary containing all the keyboard arguments for the predict step
        """
        step_kwargs = OrderedDict([('batch', batch), ('batch_idx', batch_idx)])
        if self._num_dataloaders > 1:
            step_kwargs['dataloader_idx'] = dataloader_idx
        return step_kwargs

    def _store_batch_indices(self, dataloader_idx: int) -> None:
        """Stores the batch indices if the predictions should be stored"""
        batch_sampler = self.trainer.predict_dataloaders[
            dataloader_idx].batch_sampler
        if isinstance(batch_sampler, IndexBatchSamplerWrapper):
            self.current_batch_indices = batch_sampler.batch_indices
            if self.should_store_predictions:
                self._all_batch_indices.append(batch_sampler.batch_indices)
class Closure(AbstractClosure[ClosureResult]):
    """An implementation of a :class:`AbstractClosure` for automatic optimization in Lightning that combines three
    elementary closures into one: ``training_step``, ``backward`` and ``zero_grad``.

    The Closure gets created by the training loop(s) and is then passed to the
    :meth:`torch.optim.Optimizer.step` method. An optimizer is responsible for calling the closure and optionally
    do something with the output.

    Args:
        step_fn: This is typically the :meth:`pytorch_lightning.core.lightning.LightningModule.training_step
            wrapped with processing for its outputs
        backward_fn: A function that takes a loss value as input, performs back-propagation and returns the loss value.
            Can be set to ``None`` to skip the backward operation.
        zero_grad_fn: A function that zeroes the gradients. Can be set to ``None`` to skip zero_grad, for example
            when accumulating gradients.
        profiler: A profiler for profiling the actions of the passed in closure functions.

    Example:

        closure = Closure()
        optimizer = torch.optim.Adam(...)
        optimizer.step(closure)
    """

    warning_cache = WarningCache()

    def __init__(
        self,
        step_fn: Callable[[], ClosureResult],
        backward_fn: Optional[Callable[[Tensor], None]] = None,
        zero_grad_fn: Optional[Callable[[], None]] = None,
        profiler: Optional[BaseProfiler] = None,
    ):
        super().__init__()
        self._step_fn = step_fn
        self._backward_fn = backward_fn
        self._zero_grad_fn = zero_grad_fn
        self._profiler = PassThroughProfiler() if profiler is None else profiler

    def closure(self, *args: Any, **kwargs: Any) -> ClosureResult:
        with self._profiler.profile("training_step_and_backward"):
            step_output = self._step_fn()

            if step_output.closure_loss is None:
                self.warning_cache.warn(
                    "`training_step` returned `None`. If this was on purpose, ignore this warning..."
                )

            if self._zero_grad_fn is not None:
                with self._profiler.profile("zero_grad"):
                    self._zero_grad_fn()

            if self._backward_fn is not None and step_output.closure_loss is not None:
                with self._profiler.profile("backward"):
                    self._backward_fn(step_output.closure_loss)

        return step_output

    def __call__(self, *args: Any, **kwargs: Any) -> Optional[Tensor]:
        self._result = self.closure(*args, **kwargs)
        return self._result.loss
class PredictLoop(object):
    def __init__(self, trainer):
        self.trainer = trainer
        self.max_batches = None
        self.num_dataloaders = None
        self.warning_cache = WarningCache()

    def on_trainer_init(self):
        self.trainer.num_predict_batches = []

    def get_predict_dataloaders(self):
        self.trainer.reset_predict_dataloader(self.trainer.lightning_module)

        dataloaders = self.trainer.predict_dataloaders
        max_batches = self.trainer.num_predict_batches

        return dataloaders, max_batches

    def should_skip_predict(self, max_batches):
        return sum(max_batches) == 0

    def on_predict_model_eval(self, *_, **__):
        model_ref = self.trainer.lightning_module
        model_ref.on_predict_model_eval()

    def setup(self, model, max_batches, dataloaders):
        # copy properties for forward overrides
        self.trainer.model_connector.copy_trainer_model_properties(model)

        # convert max_batches to list
        if isinstance(max_batches, int):
            max_batches = [max_batches] * len(dataloaders)

        self.max_batches = max_batches
        self.num_dataloaders = self._get_num_dataloaders(dataloaders)
        self._predictions = [[] for _ in range(self.num_dataloaders)]

        self.trainer._progress_bar_callback.on_predict_start(
            self.trainer, self.trainer.lightning_module)

    def _get_num_dataloaders(self, dataloaders):
        # case where user does:
        # return dl1, dl2
        length = len(dataloaders)
        if len(dataloaders) > 0 and isinstance(dataloaders[0], (list, tuple)):
            length = len(dataloaders[0])
        return length

    def predict(self, batch, batch_idx, dataloader_idx):
        # configure args
        args = [batch, batch_idx]
        if self.num_dataloaders:
            args.append(dataloader_idx)

        model_ref = self.trainer.lightning_module

        model_ref._current_fx_name = "predict"
        predictions = self.trainer.accelerator.predict(args)

        if predictions is None:
            self.warning_cache.warn(
                "predict returned None if it was on purpose, ignore this warning..."
            )

        self._predictions[dataloader_idx].append(predictions)
        self.trainer._progress_bar_callback.on_predict_batch_end(
            self.trainer, model_ref, predictions, batch, batch_idx,
            dataloader_idx)
        return

    def on_predict_epoch_end(self):
        self.trainer._progress_bar_callback.on_predict_end(
            self.trainer, self.trainer.lightning_module)

        results = self._predictions

        def _convert_to_numpy(v):
            return v.cpu().numpy()

        results = apply_to_collection(results, torch.Tensor, _convert_to_numpy)

        if len(results) == 1:
            return results[0]

        return results
 def __init__(self, trainer):
     self.trainer = trainer
     self.max_batches = None
     self.num_dataloaders = None
     self.warning_cache = WarningCache()
Example #7
0
class WandbLogger(LightningLoggerBase):
    r"""
    Log using `Weights and Biases <https://www.wandb.com/>`_.

    Install it with pip:

    .. code-block:: bash

        pip install wandb

    Args:
        name: Display name for the run.
        save_dir: Path where data is saved (wandb dir by default).
        offline: Run offline (data can be streamed later to wandb servers).
        id: Sets the version, mainly used to resume a previous run.
        version: Same as id.
        anonymous: Enables or explicitly disables anonymous logging.
        project: The name of the project to which this run will belong.
        log_model: Save checkpoints in wandb dir to upload on W&B servers.
        prefix: A string to put at the beginning of metric keys.
        sync_step: Sync Trainer step with wandb step.
        experiment: WandB experiment object. Automatically set when creating a run.
        \**kwargs: Additional arguments like `entity`, `group`, `tags`, etc. used by
            :func:`wandb.init` can be passed as keyword arguments in this logger.

    Raises:
        ImportError:
            If required WandB package is not installed on the device.
        MisconfigurationException:
            If both ``log_model`` and ``offline``is set to ``True``.

    Example::

        from pytorch_lightning.loggers import WandbLogger
        from pytorch_lightning import Trainer
        wandb_logger = WandbLogger()
        trainer = Trainer(logger=wandb_logger)

    Note: When logging manually through `wandb.log` or `trainer.logger.experiment.log`,
    make sure to use `commit=False` so the logging step does not increase.

    See Also:
        - `Tutorial <https://colab.research.google.com/drive/16d1uctGaw2y9KhGBlINNTsWpmlXdJwRW?usp=sharing>`__
          on how to use W&B with PyTorch Lightning
        - `W&B Documentation <https://docs.wandb.ai/integrations/lightning>`__

    """

    LOGGER_JOIN_CHAR = '-'

    def __init__(self,
                 name: Optional[str] = None,
                 save_dir: Optional[str] = None,
                 offline: Optional[bool] = False,
                 id: Optional[str] = None,
                 anonymous: Optional[bool] = False,
                 version: Optional[str] = None,
                 project: Optional[str] = None,
                 log_model: Optional[bool] = False,
                 experiment=None,
                 prefix: Optional[str] = '',
                 sync_step: Optional[bool] = True,
                 **kwargs):
        if wandb is None:
            raise ImportError(
                'You want to use `wandb` logger which is not installed yet,'  # pragma: no-cover
                ' install it with `pip install wandb`.')

        if offline and log_model:
            raise MisconfigurationException(
                f'Providing log_model={log_model} and offline={offline} is an invalid configuration'
                ' since model checkpoints cannot be uploaded in offline mode.\n'
                'Hint: Set `offline=False` to log your model.')

        super().__init__()
        self._name = name
        self._save_dir = save_dir
        self._offline = offline
        self._id = version or id
        self._anonymous = 'allow' if anonymous else None
        self._project = project
        self._log_model = log_model
        self._prefix = prefix
        self._sync_step = sync_step
        self._experiment = experiment
        self._kwargs = kwargs
        # logging multiple Trainer on a single W&B run (k-fold, resuming, etc)
        self._step_offset = 0
        self.warning_cache = WarningCache()

    def __getstate__(self):
        state = self.__dict__.copy()
        # args needed to reload correct experiment
        state[
            '_id'] = self._experiment.id if self._experiment is not None else None

        # cannot be pickled
        state['_experiment'] = None
        return state

    @property
    @rank_zero_experiment
    def experiment(self) -> Run:
        r"""

        Actual wandb object. To use wandb features in your
        :class:`~pytorch_lightning.core.lightning.LightningModule` do the following.

        Example::

            self.logger.experiment.some_wandb_function()

        """
        if self._experiment is None:
            if self._offline:
                os.environ['WANDB_MODE'] = 'dryrun'
            self._experiment = wandb.init(
                name=self._name,
                dir=self._save_dir,
                project=self._project,
                anonymous=self._anonymous,
                id=self._id,
                resume='allow',
                **self._kwargs) if wandb.run is None else wandb.run

            # offset logging step when resuming a run
            self._step_offset = self._experiment.step

            # save checkpoints in wandb dir to upload on W&B servers
            if self._save_dir is None:
                self._save_dir = self._experiment.dir
        return self._experiment

    def watch(self,
              model: nn.Module,
              log: str = 'gradients',
              log_freq: int = 100):
        self.experiment.watch(model, log=log, log_freq=log_freq)

    @rank_zero_only
    def log_hyperparams(self, params: Union[Dict[str, Any],
                                            Namespace]) -> None:
        params = self._convert_params(params)
        params = self._flatten_dict(params)
        params = self._sanitize_callable_params(params)
        self.experiment.config.update(params, allow_val_change=True)

    @rank_zero_only
    def log_metrics(self,
                    metrics: Dict[str, float],
                    step: Optional[int] = None) -> None:
        assert rank_zero_only.rank == 0, 'experiment tried to log from global_rank != 0'

        metrics = self._add_prefix(metrics)
        if self._sync_step and step is not None and step + self._step_offset < self.experiment.step:
            self.warning_cache.warn(
                'Trying to log at a previous step. Use `WandbLogger(sync_step=False)`'
                ' or try logging with `commit=False` when calling manually `wandb.log`.'
            )
        if self._sync_step:
            self.experiment.log(
                metrics,
                step=(step + self._step_offset) if step is not None else None)
        elif step is not None:
            self.experiment.log({
                **metrics, 'trainer_step': (step + self._step_offset)
            })
        else:
            self.experiment.log(metrics)

    @property
    def save_dir(self) -> Optional[str]:
        return self._save_dir

    @property
    def name(self) -> Optional[str]:
        # don't create an experiment if we don't have one
        return self._experiment.project_name(
        ) if self._experiment else self._name

    @property
    def version(self) -> Optional[str]:
        # don't create an experiment if we don't have one
        return self._experiment.id if self._experiment else self._id

    @rank_zero_only
    def finalize(self, status: str) -> None:
        # offset future training logged on same W&B run
        if self._experiment is not None:
            self._step_offset = self._experiment.step

        # upload all checkpoints from saving dir
        if self._log_model:
            wandb.save(os.path.join(self.save_dir, "*.ckpt"))
class EvaluationLoop(object):
    def __init__(self, trainer):
        self.trainer = trainer
        self.outputs = []
        self.step_metrics = []
        self.predictions = None
        self.max_batches = None
        self.warning_cache = WarningCache()
        self.num_dataloaders = None

    def on_trainer_init(self):
        self.trainer.num_sanity_val_batches = []
        self.trainer.num_test_batches = []
        self.trainer.num_val_batches = []
        self.trainer.test_dataloaders = None
        self.trainer.val_dataloaders = None

        # .validate() and .test() set this when they load a checkpoint
        self.trainer.validated_ckpt_path = None
        self.trainer.tested_ckpt_path = None

        # when true, print evaluation results in .validate() and .test()
        self.trainer.verbose_evaluate = True

    def get_evaluation_dataloaders(self):
        model = self.trainer.lightning_module

        # select dataloaders
        if self.trainer.testing:
            self.trainer.reset_test_dataloader(model)

            dataloaders = self.trainer.test_dataloaders
            max_batches = self.trainer.num_test_batches
        else:
            # val
            if self.trainer.val_dataloaders is None or self.trainer.reload_dataloaders_every_epoch:
                self.trainer.reset_val_dataloader(model)
            if self.trainer.sanity_checking:
                self.trainer.num_sanity_val_batches = [
                    min(self.trainer.num_sanity_val_steps, val_batches)
                    for val_batches in self.trainer.num_val_batches
                ]
                max_batches = self.trainer.num_sanity_val_batches
            else:
                max_batches = self.trainer.num_val_batches
            dataloaders = self.trainer.val_dataloaders
        return dataloaders, max_batches

    def should_skip_evaluation(self, max_batches):
        return sum(max_batches) == 0

    def on_evaluation_start(self, *args, **kwargs):
        if self.trainer.testing:
            self.trainer.call_hook('on_test_start', *args, **kwargs)
        else:
            self.trainer.call_hook('on_validation_start', *args, **kwargs)

    def on_evaluation_model_eval(self, *_, **__):
        model_ref = self.trainer.lightning_module
        if self.trainer.testing:
            model_ref.on_test_model_eval()
        else:
            model_ref.on_validation_model_eval()

    def on_evaluation_model_train(self, *_, **__):
        model_ref = self.trainer.lightning_module
        if self.trainer.testing:
            model_ref.on_test_model_train()
        else:
            model_ref.on_validation_model_train()

    def on_evaluation_end(self, *args, **kwargs):
        if self.trainer.testing:
            self.trainer.call_hook('on_test_end', *args, **kwargs)
        else:
            self.trainer.call_hook('on_validation_end', *args, **kwargs)

        if self.trainer.state != TrainerState.FITTING:
            # summarize profile results
            self.trainer.profiler.describe()

    def reload_evaluation_dataloaders(self):
        model = self.trainer.lightning_module
        if self.trainer.testing:
            self.trainer.reset_test_dataloader(model)
        else:
            self.trainer.reset_val_dataloader(model)

    def setup(self, model, max_batches, dataloaders):
        # bookkeeping
        self.outputs = []
        self.predictions = PredictionCollection(self.trainer.global_rank,
                                                self.trainer.world_size)

        # convert max_batches to list
        if isinstance(max_batches, int):
            max_batches = [max_batches] * len(dataloaders)

        self.max_batches = max_batches
        self.num_dataloaders = self._get_num_dataloaders(dataloaders)
        self._predictions = [[] for _ in range(self.num_dataloaders)]

    def on_evaluation_epoch_start(self, *args, **kwargs):
        self.trainer.call_hook('on_epoch_start', *args, **kwargs)

        if self.trainer.testing:
            self.trainer.call_hook('on_test_epoch_start', *args, **kwargs)
        else:
            self.trainer.call_hook('on_validation_epoch_start', *args,
                                   **kwargs)

    def _build_args(self, batch, batch_idx, dataloader_idx):
        # make dataloader_idx arg in validation_step optional
        args = [batch, batch_idx]

        multiple_val_loaders = (
            not self.trainer.testing
            and self._get_num_dataloaders(self.trainer.val_dataloaders) > 1)
        multiple_test_loaders = (
            self.trainer.testing
            and self._get_num_dataloaders(self.trainer.test_dataloaders) > 1)

        if multiple_test_loaders or multiple_val_loaders:
            args.append(dataloader_idx)

        return args

    def _get_num_dataloaders(self, dataloaders):
        # case where user does:
        # return dl1, dl2
        length = len(dataloaders)
        if len(dataloaders) > 0 and isinstance(dataloaders[0], (list, tuple)):
            length = len(dataloaders[0])
        return length

    def evaluation_step(self, batch, batch_idx, dataloader_idx):
        # configure args
        args = self._build_args(batch, batch_idx, dataloader_idx)

        model_ref = self.trainer.lightning_module
        model_ref._results = Result()

        if self.trainer.testing:
            model_ref._current_fx_name = "test_step"
            with self.trainer.profiler.profile("test_step"):
                output = self.trainer.accelerator.test_step(args)
        else:
            model_ref._current_fx_name = "validation_step"
            with self.trainer.profiler.profile("validation_step"):
                output = self.trainer.accelerator.validation_step(args)

        # capture any logged information
        self.trainer.logger_connector.cache_logged_metrics()
        # track batch size for weighted average
        is_result_obj = isinstance(output, Result)
        if is_result_obj:
            output.track_batch_size(batch)

        return output

    def evaluation_step_end(self, *args, **kwargs):
        if self.trainer.testing:
            output = self.trainer.call_hook('test_step_end', *args, **kwargs)
        else:
            output = self.trainer.call_hook('validation_step_end', *args,
                                            **kwargs)
        return output

    def evaluation_epoch_end(self, outputs):
        # unset dataloder_idx in model
        self.trainer.logger_connector.evaluation_epoch_end()

        # call the model epoch end
        model = self.trainer.lightning_module

        if self.trainer.testing:
            if is_overridden('test_epoch_end', model=model):
                model._current_fx_name = 'test_epoch_end'
                model.test_epoch_end(outputs)

        else:
            if is_overridden('validation_epoch_end', model=model):
                model._current_fx_name = 'validation_epoch_end'
                model.validation_epoch_end(outputs)

        # capture logging
        self.trainer.logger_connector.cache_logged_metrics()

    def __gather_epoch_end_eval_results(self, outputs):
        eval_results = []
        for epoch_output in outputs:
            result = epoch_output[0].__class__.gather(epoch_output)
            eval_results.append(result)

        # with 1 dataloader don't pass in a list
        if len(eval_results) == 1:
            eval_results = eval_results[0]
        return eval_results

    def __auto_reduce_result_objs(self, outputs):
        # outputs has a list of results per dataloader
        eval_results = []
        for dl_output in outputs:
            result = dl_output[0]
            result = result.__class__.reduce_on_epoch_end(dl_output)
            eval_results.append(result)

        return eval_results

    def on_predict_epoch_end(self):
        if self.trainer._progress_bar_callback is not None:
            self.trainer._progress_bar_callback.on_test_end(
                self.trainer, self.trainer.lightning_module)

        results = self._predictions

        def _convert_to_numpy(v):
            return v.cpu().numpy()

        results = apply_to_collection(results, torch.Tensor, _convert_to_numpy)

        return results, None

    def on_evaluation_batch_start(self, batch, batch_idx, dataloader_idx):
        # set dataloader_idx to model and track batch_size
        self.trainer.logger_connector.on_evaluation_batch_start(
            batch, dataloader_idx, self.num_dataloaders)

        if self.trainer.testing:
            self.trainer.call_hook('on_test_batch_start', batch, batch_idx,
                                   dataloader_idx)
        else:
            self.trainer.call_hook('on_validation_batch_start', batch,
                                   batch_idx, dataloader_idx)

    def on_evaluation_batch_end(self, output, batch, batch_idx,
                                dataloader_idx):
        if self.trainer.testing:
            self.trainer.call_hook('on_test_batch_end', output, batch,
                                   batch_idx, dataloader_idx)
        else:
            self.trainer.call_hook('on_validation_batch_end', output, batch,
                                   batch_idx, dataloader_idx)

        # store predicitons if do_write_predictions and track eval loss history
        self.store_predictions(output, batch_idx, dataloader_idx)

    def store_predictions(self, output, batch_idx, dataloader_idx):
        # Add step predictions to prediction collection to write later
        if output is not None:
            do_write_predictions = isinstance(output,
                                              Result) and self.trainer.testing
            if do_write_predictions:
                self.predictions.add(output.pop('predictions', None))

        # track debug metrics
        self.trainer.dev_debugger.track_eval_loss_history(
            batch_idx, dataloader_idx, output)

    def on_evaluation_epoch_end(
            self, outputs: Union[List[List[Dict]], List[Dict]]) -> None:
        model_ref = self.trainer.lightning_module
        hook_name = "on_test_epoch_end" if self.trainer.testing else "on_validation_epoch_end"

        self.trainer._reset_result_and_set_hook_fx_name(hook_name)

        with self.trainer.profiler.profile(hook_name):

            if hasattr(self.trainer, hook_name):
                on_evaluation_epoch_end_hook = getattr(self.trainer, hook_name)
                on_evaluation_epoch_end_hook(outputs)

            if is_overridden(hook_name, model_ref):
                model_hook_fx = getattr(model_ref, hook_name)
                if is_param_in_hook_signature(model_hook_fx, "outputs"):
                    model_hook_fx(outputs)
                else:
                    self.warning_cache.warn(
                        f"`ModelHooks.{hook_name}` signature has changed in v1.3. `outputs` parameter has been added."
                        " Support for the old signature will be removed in v1.5",
                        DeprecationWarning)
                    model_hook_fx()

        self.trainer._cache_logged_metrics()

        self.trainer.call_hook('on_epoch_end')

    def log_evaluation_step_metrics(self, output, batch_idx):
        if self.trainer.sanity_checking:
            return

        step_log_metrics = {}
        step_pbar_metrics = {}

        self.__log_result_step_metrics(step_log_metrics, step_pbar_metrics,
                                       batch_idx)

    def __log_result_step_metrics(self, step_log_metrics, step_pbar_metrics,
                                  batch_idx):
        cached_results = self.trainer.logger_connector.cached_results
        cached_batch_pbar_metrics, cached_batch_log_metrics = cached_results.update_logger_connector(
        )

        step_log_metrics.update(cached_batch_log_metrics)
        step_pbar_metrics.update(cached_batch_pbar_metrics)

        if len(step_log_metrics) > 0:
            # make the metrics appear as a different line in the same graph
            metrics_by_epoch = {}
            for k, v in step_log_metrics.items():
                metrics_by_epoch[f'{k}/epoch_{self.trainer.current_epoch}'] = v

            self.trainer.logger_connector.log_metrics(metrics_by_epoch, {},
                                                      step=batch_idx)

        if len(step_pbar_metrics) > 0:
            self.trainer.logger_connector.add_progress_bar_metrics(
                step_pbar_metrics)
Example #9
0
class PredictLoop(object):
    def __init__(self, trainer):
        self.trainer = trainer
        self.max_batches = None
        self.num_dataloaders = None
        self.warning_cache = WarningCache()
        self.batch_indices: Optional[List[int]] = None
        self.epoch_batch_indices: Optional[List[List[int]]] = None
        self.predictions: Optional[List[List[Any]]] = None
        # `DDPSpawnPlugin` plugins and derivate don't support return predictions.
        self._return_predictions: Optional[bool] = None
        self._previous_grad_status: Optional[bool] = None

    @property
    def return_predictions(self) -> bool:
        return self._return_predictions

    @return_predictions.setter
    def return_predictions(self,
                           return_predictions: Optional[bool] = None) -> None:
        # ``DDPSpawnPlugin`` plugins and derivate don't support return predictions.
        is_ddp_spawn = isinstance(self.trainer.training_type_plugin,
                                  DDPSpawnPlugin)
        if return_predictions and is_ddp_spawn:
            raise MisconfigurationException(
                "`return_predictions` should be set to `False` when using the `DDPSpawnPlugin` or children class. "
                f"Found {return_predictions} with training_type_plugin {type(self.trainer.training_type_plugin)}."
            )
        # For non ``DDPSpawnPlugin`` plugin, the `return_predictions` is True by default unless user decide otherwise.
        self._return_predictions = not is_ddp_spawn if return_predictions is None else return_predictions

    @property
    def should_store_predictions(self) -> bool:
        any_pred = any(cb.interval.on_epoch
                       for cb in self.trainer.prediction_writer_callbacks)
        return self.return_predictions or any_pred

    def on_trainer_init(self):
        self.trainer.num_predict_batches = []
        self.trainer.predicted_ckpt_path = None

    def get_predict_dataloaders(self):
        self.trainer.reset_predict_dataloader(self.trainer.lightning_module)

        dataloaders = self.trainer.predict_dataloaders
        max_batches = self.trainer.num_predict_batches

        return dataloaders, max_batches

    def should_skip_predict(self, max_batches):
        return sum(max_batches) == 0

    def on_predict_model_eval(self):
        model_ref = self.trainer.lightning_module
        model_ref.on_predict_model_eval()

    def setup(self, max_batches, dataloaders):
        # convert max_batches to list
        if isinstance(max_batches, int):
            max_batches = [max_batches] * len(dataloaders)

        self.max_batches = max_batches
        self.num_dataloaders = self._get_num_dataloaders(dataloaders)
        self.predictions = [[] for _ in range(self.num_dataloaders)]
        self.epoch_batch_indices = [[] for _ in range(self.num_dataloaders)]

    def _get_num_dataloaders(self, dataloaders: List[DataLoader]) -> int:
        # case where user does:
        # return dl1, dl2
        length = len(dataloaders)
        if len(dataloaders) > 0 and isinstance(dataloaders[0], (list, tuple)):
            length = len(dataloaders[0])
        return length

    def _build_kwargs(self, batch, batch_idx, dataloader_idx):
        step_kwargs = OrderedDict([('batch', batch), ('batch_idx', batch_idx)])
        if self.num_dataloaders:
            step_kwargs['dataloader_idx'] = dataloader_idx
        return step_kwargs

    def predict_step(self, batch: Any, batch_idx: int,
                     dataloader_idx: int) -> None:
        # configure step_kwargs
        step_kwargs = self._build_kwargs(batch, batch_idx, dataloader_idx)

        # extract batch_indices and store them
        self._store_batch_indices(dataloader_idx)

        model_ref = self.trainer.lightning_module

        self.trainer.call_hook("on_predict_batch_start", batch, batch_idx,
                               dataloader_idx)

        model_ref._current_fx_name = "predict"
        predictions = self.trainer.accelerator.predict_step(step_kwargs)

        if predictions is None:
            self.warning_cache.warn(
                "predict returned None if it was on purpose, ignore this warning..."
            )

        self.trainer.call_hook("on_predict_batch_end", predictions, batch,
                               batch_idx, dataloader_idx)

        if self.should_store_predictions:
            self.predictions[dataloader_idx].append(predictions)

    def _store_batch_indices(self, dataloader_idx: int) -> None:
        batch_sampler = self.trainer.predict_dataloaders[
            dataloader_idx].batch_sampler
        if isinstance(batch_sampler, IndexBatchSamplerWrapper):
            self.batch_indices = batch_sampler.batch_indices
            if self.should_store_predictions:
                self.epoch_batch_indices[dataloader_idx].append(
                    batch_sampler.batch_indices)

    def on_predict_start(self) -> None:
        # enable eval mode + no grads
        self.on_predict_model_eval()
        self.trainer.lightning_module.zero_grad()
        self._previous_grad_status = torch.is_grad_enabled()
        torch.set_grad_enabled(False)

        # hook
        self.trainer.call_hook("on_predict_start")
        self.trainer.call_hook("on_predict_epoch_start")

    def on_predict_epoch_end(self) -> Optional[_PREDICT_OUTPUT]:
        self.trainer.profiler.describe()

        results = self.predictions

        self.trainer.call_hook("on_predict_epoch_end", results)

        if self.return_predictions:
            return results[0] if self.num_dataloaders == 1 else results

    def on_predict_end(self):
        # clear memory. the predictions are extracted in `on_predict_epoch_end`.
        self.predictions = None
        self.batch_indices = None

        # reset grad to its previous status.
        torch.set_grad_enabled(self._previous_grad_status)

        # hook
        self.trainer.call_hook("on_predict_end")
class TrainLoop:
    def __init__(self, trainer, multiple_trainloader_mode):
        self.trainer = trainer
        self.early_stopping_accumulator = None
        self.checkpoint_accumulator = None
        self.accumulated_loss = None
        self.warning_cache = WarningCache()
        self._teardown_already_run = False
        self.running_loss = TensorRunningAccum(window_length=20)
        self.automatic_optimization = True
        self._curr_step_result = None
        self._cur_grad_norm_dict = None
        self._multiple_trainloader_mode = multiple_trainloader_mode
        self._skip_backward = False
        self.trainer._multiple_trainloader_mode = multiple_trainloader_mode

    def on_trainer_init(
        self,
        max_epochs,
        min_epochs,
        max_steps,
        min_steps,
        num_sanity_val_steps,
        automatic_optimization,
        weights_summary,
    ):
        self.trainer.global_step = 0
        self.trainer.current_epoch = 0
        self.trainer.interrupted = False
        self.trainer.should_stop = False
        self.trainer._state = TrainerState.INITIALIZING

        self.trainer.total_batch_idx = 0
        self.trainer.batch_idx = 0
        self.trainer.num_training_batches = 0
        self.trainer.train_dataloader = None
        self.automatic_optimization = automatic_optimization

        # If neither max_epochs or max_steps is set, then use existing default of max_epochs = 1000
        self.trainer.max_epochs = 1000 if (
            max_epochs is None and max_steps is None) else max_epochs
        # If neither max_epochs or max_steps is set, then use existing default of min_epochs = 1
        self.trainer.min_epochs = 1 if (min_epochs is None
                                        and min_steps is None) else min_epochs
        self.trainer.max_steps = max_steps
        self.trainer.min_steps = min_steps

        if num_sanity_val_steps == -1:
            self.trainer.num_sanity_val_steps = float("inf")
        else:
            self.trainer.num_sanity_val_steps = num_sanity_val_steps

        self.trainer.weights_summary = weights_summary
        if weights_summary is not None and weights_summary not in ModelSummary.MODES:
            raise MisconfigurationException(
                f"`weights_summary` can be None, {', '.join(ModelSummary.MODES)}, got {weights_summary}"
            )

    @property
    def num_optimizers(self):
        num_optimizers = len(self.get_optimizers_iterable())
        return num_optimizers

    def should_skip_training(self):
        should_by_epoch = self.trainer.max_epochs is not None and self.trainer.current_epoch >= self.trainer.max_epochs
        return should_by_epoch or self.trainer.num_training_batches == 0

    def on_train_start(self):
        # clear cache before training
        if self.trainer._device_type == DeviceType.GPU and self.trainer.root_gpu is not None:
            # use context because of:
            # https://discuss.pytorch.org/t/out-of-memory-when-i-use-torch-cuda-empty-cache/57898
            with torch.cuda.device(f"cuda:{self.trainer.root_gpu}"):
                torch.cuda.empty_cache()

        # hook
        self.trainer.call_hook("on_train_start")

        # provide rank to profiler
        self.trainer.profile_connector.on_train_start(self.trainer)

    def setup_fit(self, model, train_dataloader, val_dataloaders, datamodule):
        # bind logger and other properties
        self.trainer.model_connector.copy_trainer_model_properties(model)

        # clean hparams
        if hasattr(model, "hparams"):
            parsing.clean_namespace(model.hparams)

        # links data to the trainer
        self.trainer.data_connector.attach_data(model, train_dataloader,
                                                val_dataloaders, datamodule)

        # check that model is configured correctly
        self.trainer.config_validator.verify_loop_configurations(model)

        # attach model log function to callback
        self.trainer.callback_connector.attach_model_logging_functions(model)

    def setup_training(self):
        """
        Sanity check a few things before starting actual training.
        """
        # --------------------------
        # Pre-train
        # --------------------------
        ref_model = self.trainer.get_model()

        # on pretrain routine start
        self.trainer.on_pretrain_routine_start(ref_model)
        if self.trainer.is_function_implemented("on_pretrain_routine_start"):
            ref_model.on_pretrain_routine_start()

        # print model summary
        if self.trainer.is_global_zero:
            ref_model.summarize(mode=self.trainer.weights_summary)

        # restore training state and model weights before hpc is called
        self.trainer.checkpoint_connector.restore_weights()

        # on pretrain routine end
        self.trainer.on_pretrain_routine_end(ref_model)
        if self.trainer.is_function_implemented("on_pretrain_routine_end"):
            ref_model.on_pretrain_routine_end()

    def on_train_end(self):
        if self._teardown_already_run:
            return

        self._teardown_already_run = True

        # trigger checkpoint check. need to temporarily decrease the global step to avoid saving duplicates
        # when a checkpoint was saved at the last step
        self.trainer.global_step -= 1
        self.check_checkpoint_callback(should_update=True, is_last=True)
        self.trainer.global_step += 1

        # hook
        self.trainer.call_hook("on_train_end")

        # kill loggers
        if self.trainer.logger is not None:
            self.trainer.logger.finalize("success")

        # summarize profile results
        if self.trainer.global_rank == 0:
            self.trainer.profiler.describe()

        # give accelerators a chance to finish
        self.trainer.accelerator_backend.on_train_end()

        # clear mem
        if self.trainer._device_type == DeviceType.GPU:
            model = self.trainer.get_model()
            model.cpu()
            torch.cuda.empty_cache()

    def check_checkpoint_callback(self, should_update, is_last=False):
        # TODO bake this logic into the ModelCheckpoint callback
        if should_update and self.trainer.checkpoint_connector.has_trained:
            callbacks = self.trainer.checkpoint_callbacks

            if is_last and any(cb.save_last for cb in callbacks):
                rank_zero_info("Saving latest checkpoint...")

            model = self.trainer.get_model()

            for cb in callbacks:
                cb.on_validation_end(self.trainer, model)

    def check_early_stopping_callback(self, should_update):
        # TODO bake this logic into the EarlyStopping callback
        if should_update and self.trainer.checkpoint_connector.has_trained:
            callbacks = [
                c for c in self.trainer.callbacks
                if isinstance(c, EarlyStopping)
            ]
            model = self.trainer.get_model()

            for cb in callbacks:
                cb.on_validation_end(self.trainer, model)

    def on_train_epoch_start(self, epoch):

        # update training progress in trainer
        self.trainer.current_epoch = epoch

        model = self.trainer.get_model()

        # reset train dataloader
        if epoch != 0 and self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_train_dataloader(model)

        # todo: specify the possible exception
        with suppress(Exception):
            # set seed for distributed sampler (enables shuffling for each epoch)
            self.trainer.train_dataloader.sampler.set_epoch(epoch)

        # changing gradient according accumulation_scheduler
        self.trainer.accumulation_scheduler.on_epoch_start(
            self.trainer, self.trainer.get_model())

        # stores accumulated grad fractions per batch
        self.accumulated_loss = TensorRunningAccum(
            window_length=self.trainer.accumulate_grad_batches)

        # structured result accumulators for callbacks
        self.early_stopping_accumulator = Accumulator()
        self.checkpoint_accumulator = Accumulator()

        # hook
        self.trainer.call_hook("on_epoch_start")
        self.trainer.call_hook("on_train_epoch_start")

    def on_train_batch_end(self, epoch_output, batch_end_outputs, batch,
                           batch_idx, dataloader_idx):
        # hook
        self.trainer.call_hook('on_train_batch_end', batch_end_outputs, batch,
                               batch_idx, dataloader_idx)
        self.trainer.call_hook('on_batch_end')

        # figure out what to track for epoch end
        self.track_epoch_end_reduce_metrics(epoch_output, batch_end_outputs)

        # reset batch logger internals
        self.trainer.logger_connector.on_train_batch_end()

    def reset_train_val_dataloaders(self, model):
        if self.trainer.train_dataloader is None or not self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_train_dataloader(model)

        if self.trainer.val_dataloaders is None and not self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_val_dataloader(model)

    def track_epoch_end_reduce_metrics(self, epoch_output, batch_end_outputs):

        # track the outputs to reduce at the end of the epoch
        for opt_idx, opt_outputs in enumerate(batch_end_outputs):
            sample_output = opt_outputs[-1]

            # decide if we need to reduce at the end of the epoch automatically
            auto_reduce_tng_result = isinstance(
                sample_output,
                Result) and sample_output.should_reduce_on_epoch_end
            hook_overridden = (is_overridden("training_epoch_end",
                                             model=self.trainer.get_model()) or
                               is_overridden("on_train_epoch_end",
                                             model=self.trainer.get_model()))

            # only track when a) it needs to be autoreduced OR b) the user wants to manually reduce on epoch end
            if not (hook_overridden or auto_reduce_tng_result):
                continue

            # with 1 step (no tbptt) don't use a sequence at epoch end
            if isinstance(opt_outputs,
                          list) and len(opt_outputs) == 1 and not isinstance(
                              opt_outputs[0], Result):
                opt_outputs = opt_outputs[0]

            epoch_output[opt_idx].append(opt_outputs)

    def get_optimizers_iterable(self):
        """
        Generates an iterable with (idx, optimizer) for each optimizer.
        """
        if not self.trainer.optimizer_frequencies:
            # call training_step once per optimizer
            return list(enumerate(self.trainer.optimizers))

        optimizer_freq_cumsum = np.cumsum(self.trainer.optimizer_frequencies)
        optimizers_loop_length = optimizer_freq_cumsum[-1]
        current_place_in_loop = self.trainer.total_batch_idx % optimizers_loop_length

        # find optimzier index by looking for the first {item > current_place} in the cumsum list
        opt_idx = np.argmax(optimizer_freq_cumsum > current_place_in_loop)
        return [[opt_idx, self.trainer.optimizers[opt_idx]]]

    def on_after_backward(self, training_step_output, batch_idx,
                          untouched_loss):
        is_result_obj = isinstance(training_step_output, Result)

        if is_result_obj:
            training_step_output.detach()
        else:
            training_step_output.batch_loss = training_step_output.batch_loss.detach(
            )

        # insert after step hook
        self.trainer.call_hook("on_after_backward")

        # when in dev debugging track the losses
        self.trainer.dev_debugger.track_train_loss_history(
            batch_idx, untouched_loss.detach())

    def _check_training_step_output(self, training_step_output):
        if isinstance(training_step_output,
                      torch.Tensor) and not self.automatic_optimization:
            if training_step_output.grad_fn is None:
                # TODO: Find why - RuntimeError: Expected to mark a variable ready only once ...
                raise MisconfigurationException(
                    "In manual optimization, `training_step` should not return a Tensor"
                )

    def training_step(self, split_batch, batch_idx, opt_idx, hiddens):
        # give the PL module a result for logging
        model_ref = self.trainer.get_model()

        with self.trainer.profiler.profile("model_forward"):
            args = self.build_train_args(split_batch, batch_idx, opt_idx,
                                         hiddens)

            # manually capture logged metrics
            model_ref._current_fx_name = 'training_step'
            model_ref._results = Result()
            with self.trainer.profiler.profile("training_step"):
                training_step_output = self.trainer.accelerator_backend.training_step(
                    args)
            self.trainer.logger_connector.cache_logged_metrics()

            self._check_training_step_output(training_step_output)

            training_step_output = self.trainer.call_hook(
                "training_step_end", training_step_output)

            training_step_output_for_epoch_end, training_step_output = self._process_training_step_output(
                training_step_output, split_batch)
            is_result_obj = isinstance(training_step_output, Result)

            if training_step_output_for_epoch_end is None:
                return None

        # enable empty loss when using manual opt
        closure_loss = None
        untouched_loss = None

        if self.trainer.train_loop.automatic_optimization:
            # accumulate loss
            # (if accumulate_grad_batches = 1 no effect)
            if is_result_obj:
                closure_loss = training_step_output.minimize
            else:
                closure_loss = training_step_output.batch_loss

            closure_loss = closure_loss / self.trainer.accumulate_grad_batches

            # the loss will get scaled for amp. avoid any modifications to it
            untouched_loss = closure_loss.detach().clone()

        # result
        result = AttributeDict(
            closure_loss=closure_loss,
            loss=untouched_loss,
            training_step_output=training_step_output,
            training_step_output_for_epoch_end=
            training_step_output_for_epoch_end,
            hiddens=training_step_output.hiddens,
        )
        return result

    def _process_training_step_output(self, training_step_output, split_batch):
        training_step_output_for_epoch_end = training_step_output

        # enable validation_step return None
        if training_step_output_for_epoch_end is None:
            return None, None

        # -----------------------------------------
        # process result return (DEPRECATE in 1.0)
        # -----------------------------------------
        if isinstance(training_step_output, Result):
            training_step_output_for_epoch_end = self._process_result(
                training_step_output, split_batch)
            return training_step_output_for_epoch_end, training_step_output

        # -----------------------------------------
        # process hybrid (1.0)
        # -----------------------------------------
        # no need for these checks in 1.0.0
        # TODO: remove checks in 1.0.0
        is_tensor = isinstance(training_step_output_for_epoch_end,
                               torch.Tensor)
        is_1_0_output = is_tensor or ("log" not in training_step_output
                                      and "progress_bar"
                                      not in training_step_output)
        if is_1_0_output:
            return self._process_training_step_output_1_0(
                training_step_output, split_batch)

        # -----------------------------------------
        # process old dict (deprecate 1.0)
        # -----------------------------------------
        training_step_output = self.trainer.process_dict_result(
            training_step_output, train=True)

        training_step_output = AttributeDict(
            batch_loss=training_step_output[0],
            pbar_on_batch_end=training_step_output[1],
            log_metrics=training_step_output[2],
            callback_metrics=training_step_output[3],
            hiddens=training_step_output[4],
        )
        # if the user decides to finally reduce things in epoch_end, save raw output without graphs
        if isinstance(training_step_output_for_epoch_end, torch.Tensor):
            training_step_output_for_epoch_end = training_step_output_for_epoch_end.detach(
            )
        else:
            training_step_output_for_epoch_end = recursive_detach(
                training_step_output_for_epoch_end)

        return training_step_output_for_epoch_end, training_step_output

    def _process_training_step_output_1_0(self, training_step_output,
                                          split_batch):
        result = self.trainer.get_model()._results

        loss = None
        hiddens = None

        # handle dict return
        if isinstance(training_step_output, dict):
            loss = training_step_output.pop("loss", None)
            hiddens = training_step_output.pop("hiddens", None)
            result["extra"] = training_step_output

        # handle scalar return
        elif isinstance(training_step_output, torch.Tensor):
            loss = training_step_output
            result["extra"] = {}

        # map to results under the hood
        result.minimize = loss
        result.hiddens = hiddens

        # track batch for manual reduction with result
        result.track_batch_size(len(split_batch))

        # track metrics without grads for epoch reduction
        training_step_output_for_epoch_end = copy(result)
        training_step_output_for_epoch_end.detach()
        if self.trainer.move_metrics_to_cpu:
            training_step_output_for_epoch_end.cpu()

        # what flows back into the system
        training_step_output = result

        return training_step_output_for_epoch_end, training_step_output

    def _process_result(self, training_step_output, split_batch):
        training_step_output.track_batch_size(len(split_batch))
        m = """
        TrainResult and EvalResult were deprecated in 0.9.1 and support will drop in 1.0.0.
        Use self.log and .write from the LightningModule to log metrics and write predictions.
        training_step can now only return a scalar (for the loss) or a dictionary with anything you want.

        Option 1:
        return loss

        Option 2:
        return {'loss': loss, 'anything_else': ...}

        Option 3:
        return {'loss': loss, 'hiddens': hiddens, 'anything_else': ...}
            """
        rank_zero_warn(m)

        training_step_output_for_epoch_end = copy(training_step_output)
        training_step_output_for_epoch_end.detach()

        return training_step_output_for_epoch_end

    def optimizer_step(self, optimizer, opt_idx, batch_idx,
                       train_step_and_backward_closure):
        model_ref = self.trainer.get_model()

        is_lbfgs = isinstance(optimizer, torch.optim.LBFGS)
        using_native_amp = self.trainer.amp_backend == AMPType.NATIVE

        # native amp + lbfgs is a no go right now
        if using_native_amp and is_lbfgs:
            raise MisconfigurationException(
                'native PyTorch amp and lbfgs are not compatible.'
                ' To request, please file a Github issue in PyTorch and tag @mcarilli'
            )

        # wraps into LightningOptimizer only for running step
        optimizer = LightningOptimizer._to_lightning_optimizer(
            optimizer, self.trainer, opt_idx)

        # model hook
        model_ref.optimizer_step(
            self.trainer.current_epoch,
            batch_idx,
            optimizer,
            opt_idx,
            train_step_and_backward_closure,
            on_tpu=self.trainer._device_type == DeviceType.TPU
            and _TPU_AVAILABLE,
            using_native_amp=using_native_amp,
            using_lbfgs=is_lbfgs,
        )

    def on_before_zero_grad(self, optimizer):
        self.trainer.call_hook('on_before_zero_grad', optimizer)

    def track_and_norm_grad(self, optimizer):
        # track gradient norms
        grad_norm_dic = self._track_gradient_norm()

        # clip gradients
        self.trainer.accelerator_backend.clip_gradients(optimizer)
        self._cur_grad_norm_dict = grad_norm_dic

    def _track_gradient_norm(self):
        grad_norm_dict = {}
        if (self.trainer.global_step +
                1) % self.trainer.log_every_n_steps == 0:
            if float(self.trainer.track_grad_norm) > 0:
                model = self.trainer.get_model()
                grad_norm_dict = model.grad_norm(self.trainer.track_grad_norm)
        return grad_norm_dict

    def process_hiddens(self, opt_closure_result):
        hiddens = opt_closure_result.hiddens
        if isinstance(opt_closure_result.training_step_output, Result):
            opt_closure_result.training_step_output_for_epoch_end.drop_hiddens(
            )
        return hiddens

    def tbptt_split_batch(self, batch):
        splits = [batch]
        if self.trainer.truncated_bptt_steps is not None:
            model_ref = self.trainer.get_model()
            with self.trainer.profiler.profile("tbptt_split_batch"):
                splits = model_ref.tbptt_split_batch(
                    batch, self.trainer.truncated_bptt_steps)
        return splits

    def run_training_epoch(self):
        # modify dataloader if needed (ddp, etc...)
        train_dataloader = self.trainer.accelerator_backend.process_dataloader(
            self.trainer.train_dataloader)

        # track epoch output
        epoch_output = [[] for _ in range(self.num_optimizers)]

        train_dataloader = self.trainer.data_connector.get_profiled_train_dataloader(
            train_dataloader)
        dataloader_idx = 0
        should_check_val = False

        for batch_idx, (batch, is_last_batch) in train_dataloader:

            self.trainer.batch_idx = batch_idx

            # ------------------------------------
            # TRAINING_STEP + TRAINING_STEP_END
            # ------------------------------------
            with self.trainer.profiler.profile("run_training_batch"):
                batch_output = self.run_training_batch(batch, batch_idx,
                                                       dataloader_idx)

            # when returning -1 from train_step, we end epoch early
            if batch_output.signal == -1:
                break

            batch_end_outputs = self.process_train_step_outputs(
                batch_output.training_step_output_for_epoch_end,
                self.early_stopping_accumulator,
                self.checkpoint_accumulator,
            )
            # hook
            # TODO: add outputs to batches
            self.on_train_batch_end(epoch_output, batch_end_outputs, batch,
                                    batch_idx, dataloader_idx)

            # -----------------------------------------
            # SAVE METRICS TO LOGGERS
            # -----------------------------------------
            self.trainer.logger_connector.log_train_step_metrics(batch_output)

            # -----------------------------------------
            # VALIDATE IF NEEDED + CHECKPOINT CALLBACK
            # -----------------------------------------
            should_check_val = self.should_check_val_fx(
                batch_idx, is_last_batch)
            if should_check_val:
                self.trainer.run_evaluation()

                # reset stage to train
                self.trainer._set_wide_running_stage(RunningStage.TRAINING)

            # -----------------------------------------
            # SAVE LOGGERS (ie: Tensorboard, etc...)
            # -----------------------------------------
            self.save_loggers_on_train_batch_end()

            # update LR schedulers
            monitor_metrics = deepcopy(
                self.trainer.logger_connector.callback_metrics)
            self.update_train_loop_lr_schedulers(
                monitor_metrics=monitor_metrics)
            self.trainer.checkpoint_connector.has_trained = True

            # max steps reached, end training
            if (self.trainer.max_steps is not None
                    and self.trainer.max_steps == self.trainer.global_step + 1
                    and self._accumulated_batches_reached()):
                break

            # end epoch early
            # stop when the flag is changed or we've gone past the amount
            # requested in the batches
            if self.trainer.should_stop:
                break

            self.trainer.total_batch_idx += 1

            # stop epoch if we limited the number of training batches
            if self._num_training_batches_reached(is_last_batch):
                break

            # progress global step according to grads progress
            self.increment_accumulated_grad_global_step()

        # epoch end hook
        self.run_on_epoch_end_hook(epoch_output)

        # log epoch metrics
        self.trainer.logger_connector.log_train_epoch_end_metrics(
            epoch_output, self.checkpoint_accumulator,
            self.early_stopping_accumulator, self.num_optimizers)

        should_check_val = self.should_check_val_fx(batch_idx,
                                                    is_last_batch,
                                                    on_epoch=True)
        if should_check_val:
            self.trainer.run_evaluation(on_epoch=True)

            # reset stage to train
            self.trainer._set_wide_running_stage(RunningStage.TRAINING)

        should_skip_eval = self.trainer.evaluation_loop.should_skip_evaluation(
            self.trainer.num_val_batches)
        should_train_only = self.trainer.disable_validation or should_skip_eval

        if should_train_only:
            # update epoch level lr_schedulers
            self.trainer.optimizer_connector.update_learning_rates(
                interval='epoch')
            self.check_checkpoint_callback(True)
            self.check_early_stopping_callback(True)

        # increment the global step once
        # progress global step according to grads progress
        self.increment_accumulated_grad_global_step()

    def run_training_batch(self, batch, batch_idx, dataloader_idx):
        # track grad norms
        grad_norm_dic = {}

        # bookkeeping
        self.trainer.hiddens = None

        # track all outputs across time and num of optimizers
        batch_outputs = [[]
                         for _ in range(len(self.get_optimizers_iterable()))]

        if batch is None:
            return AttributeDict(signal=0, grad_norm_dic=grad_norm_dic)

        # hook
        response = self.trainer.call_hook("on_batch_start")
        if response == -1:
            return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)

        # hook
        response = self.trainer.call_hook("on_train_batch_start", batch,
                                          batch_idx, dataloader_idx)
        if response == -1:
            return AttributeDict(signal=-1, grad_norm_dic=grad_norm_dic)

        # lightning module hook
        splits = self.tbptt_split_batch(batch)

        for split_idx, split_batch in enumerate(splits):

            # create an iterable for optimizers and loop over them
            for opt_idx, optimizer in self.prepare_optimizers():

                # toggle model params + set info to logger_connector
                self.run_train_split_start(split_idx, split_batch, opt_idx,
                                           optimizer)

                if self.should_accumulate():
                    # For gradient accumulation

                    # -------------------
                    # calculate loss (train step + train step end)
                    # -------------------

                    # automatic_optimization=True: perform dpp sync only when performing optimizer_step
                    # automatic_optimization=False: don't block synchronization here
                    with self.block_ddp_sync_behaviour():
                        self.training_step_and_backward(
                            split_batch, batch_idx, opt_idx, optimizer,
                            self.trainer.hiddens)

                    batch_outputs = self._process_closure_result(
                        batch_outputs=batch_outputs,
                        opt_idx=opt_idx,
                    )

                # ------------------------------
                # BACKWARD PASS
                # ------------------------------
                # gradient update with accumulated gradients

                else:
                    if self.automatic_optimization:

                        def train_step_and_backward_closure():
                            result = self.training_step_and_backward(
                                split_batch, batch_idx, opt_idx, optimizer,
                                self.trainer.hiddens)
                            return None if result is None else result.loss

                        # optimizer step
                        self.optimizer_step(optimizer, opt_idx, batch_idx,
                                            train_step_and_backward_closure)

                    else:
                        self._curr_step_result = self.training_step(
                            split_batch, batch_idx, opt_idx,
                            self.trainer.hiddens)

                    if self._curr_step_result is None:
                        # user decided to skip optimization
                        # make sure to zero grad.
                        continue

                    batch_outputs = self._process_closure_result(
                        batch_outputs=batch_outputs,
                        opt_idx=opt_idx,
                    )

                    # todo: Properly aggregate grad_norm accros opt_idx and split_idx
                    grad_norm_dic = self._cur_grad_norm_dict
                    self._cur_grad_norm_dict = None

                    # update running loss + reset accumulated loss
                    self.update_running_loss()

        result = AttributeDict(
            signal=0,
            grad_norm_dic=grad_norm_dic,
            training_step_output_for_epoch_end=batch_outputs,
        )
        return result

    @contextmanager
    def block_ddp_sync_behaviour(self):
        """
        automatic_optimization = True
        Blocks ddp sync gradients behaviour on backwards pass.
        This is useful for skipping sync when accumulating gradients, reducing communication overhead

        automatic_optimization = False
        do not block ddp gradient sync when using manual optimization
        as gradients are needed within the training step

        Returns:
            context manager with sync behaviour off

        """
        if self.trainer.accelerator_backend is not None and self.automatic_optimization:
            yield self.trainer.accelerator_backend.block_ddp_plugin_sync_behaviour(
            )
        else:
            yield None

    def _process_closure_result(self, batch_outputs: list,
                                opt_idx: int) -> list:
        opt_closure_result = self._curr_step_result

        if opt_closure_result is not None:

            # cache metrics
            self.trainer.logger_connector.cache_training_step_metrics(
                opt_closure_result)

            # track hiddens
            self.trainer.hiddens = self.process_hiddens(opt_closure_result)

            # check if loss or model weights are nan
            if self.trainer.terminate_on_nan:
                self.trainer.detect_nan_tensors(opt_closure_result.loss)

            # track all the outputs across all steps
            batch_opt_idx = opt_idx if len(batch_outputs) > 1 else 0
            batch_outputs[batch_opt_idx].append(
                opt_closure_result.training_step_output_for_epoch_end)

            if self.automatic_optimization:
                # track total loss for logging (avoid mem leaks)
                self.accumulated_loss.append(opt_closure_result.loss)

        self._curr_step_result = None

        return batch_outputs

    def training_step_and_backward(self, split_batch, batch_idx, opt_idx,
                                   optimizer, hiddens):
        """
        wrap the forward step in a closure so second order methods work
        """
        with self.trainer.profiler.profile("training_step_and_backward"):
            # lightning module hook
            result = self.training_step(split_batch, batch_idx, opt_idx,
                                        hiddens)
            self._curr_step_result = result

            if result is None:
                self.warning_cache.warn(
                    "training_step returned None if it was on purpose, ignore this warning..."
                )
                return None

            if not self._skip_backward and self.trainer.train_loop.automatic_optimization:
                # backward pass
                with self.trainer.profiler.profile("model_backward"):
                    self.backward(result, optimizer, opt_idx)

                # hook - call this hook only
                # when gradients have finished to accumulate
                if not self.should_accumulate():
                    self.on_after_backward(result.training_step_output,
                                           batch_idx, result.loss)

                # check if loss or model weights are nan
                if self.trainer.terminate_on_nan:
                    self.trainer.detect_nan_tensors(result.loss)

                if len(self.trainer.optimizers) > 1:
                    # revert back to previous state
                    self.trainer.get_model().untoggle_optimizer(opt_idx)

        return result

    def backward(self, result, optimizer, opt_idx, *args, **kwargs):
        self.trainer.dev_debugger.track_event("backward_call")

        # backward can be called manually in the training loop
        if isinstance(result, torch.Tensor):
            self.trainer.accelerator_backend.backward(result, optimizer,
                                                      opt_idx, *args, **kwargs)
        else:
            result.closure_loss = self.trainer.accelerator_backend.backward(
                result.closure_loss, optimizer, opt_idx, *args, **kwargs)

        if not self.should_accumulate():
            # track gradients
            self.track_and_norm_grad(optimizer=optimizer)

    def update_train_loop_lr_schedulers(self, monitor_metrics=None):
        num_accumulated_batches_reached = self._accumulated_batches_reached()
        num_training_batches_reached = self._num_training_batches_reached()

        if num_accumulated_batches_reached or num_training_batches_reached:
            # update lr
            self.trainer.optimizer_connector.update_learning_rates(
                interval="step", monitor_metrics=monitor_metrics)

    def run_on_epoch_end_hook(self, epoch_output):
        # inform logger the batch loop has finished
        self.trainer.logger_connector.on_train_epoch_end()

        self.trainer.call_hook('on_train_epoch_end', epoch_output)
        self.trainer.call_hook('on_epoch_end')

    def increment_accumulated_grad_global_step(self):
        num_accumulated_batches_reached = self._accumulated_batches_reached()
        num_training_batches_reached = self._num_training_batches_reached()

        # progress global step according to grads progress
        if num_accumulated_batches_reached or num_training_batches_reached:
            self.trainer.global_step += 1

    def _accumulated_batches_reached(self):
        return (self.trainer.batch_idx +
                1) % self.trainer.accumulate_grad_batches == 0

    def _num_training_batches_reached(self, is_last_batch=False):
        return (self.trainer.batch_idx +
                1) == self.trainer.num_training_batches or is_last_batch

    def should_accumulate(self):
        # checks if backward or backward + optimizer step (via closure)
        accumulation_done = self._accumulated_batches_reached()
        is_final_batch = self._num_training_batches_reached()
        return not (accumulation_done or is_final_batch)

    def should_check_val_fx(self, batch_idx, is_last_batch, on_epoch=False):
        # decide if we should run validation
        is_val_check_batch = (batch_idx +
                              1) % self.trainer.val_check_batch == 0
        is_val_check_epoch = (self.trainer.current_epoch +
                              1) % self.trainer.check_val_every_n_epoch == 0
        can_check_val = self.trainer.enable_validation and is_val_check_epoch
        is_last_batch_for_infinite_dataset = is_last_batch and self.trainer.val_check_batch == float(
            "inf")
        epoch_end_val_check = self.trainer.val_check_batch == self.trainer.num_training_batches

        should_check_val = (
            (is_val_check_batch and epoch_end_val_check)
            or self.trainer.should_stop or is_last_batch_for_infinite_dataset
        ) if on_epoch else (is_val_check_batch and not epoch_end_val_check)

        return should_check_val and can_check_val

    def build_train_args(self, batch, batch_idx, opt_idx, hiddens):
        # enable not needing to add opt_idx to training_step
        args = [batch, batch_idx]

        if len(self.trainer.optimizers) > 1:
            if self.trainer.has_arg("training_step", "optimizer_idx"):
                args.append(opt_idx)
            else:
                num_opts = len(self.trainer.optimizers)
                raise ValueError(
                    f"Your LightningModule defines {num_opts} optimizers but "
                    f'training_step is missing the "optimizer_idx" argument.')

        # pass hiddens if using tbptt
        if self.trainer.truncated_bptt_steps is not None:
            args.append(hiddens)

        return args

    def save_loggers_on_train_batch_end(self):
        # when loggers should save to disk
        should_flush_logs = self.trainer.logger_connector.should_flush_logs
        if should_flush_logs and self.trainer.is_global_zero and self.trainer.logger is not None:
            self.trainer.logger.save()

    def process_train_step_outputs(self, all_train_step_outputs,
                                   early_stopping_accumulator,
                                   checkpoint_accumulator):
        """
        Figure out what needs to be tracked/logged at the end of the epoch
        """

        # the training step outputs a list per optimizer. The list contains the outputs at each time step
        # when no TBPTT is used, then the list has 1 item per batch
        # when TBPTT IS used, then the list has n items (1 per time step)
        batch_end_outputs = []
        for optimizer_idx_outputs in all_train_step_outputs:
            # extract one representative sample from each time step (1 if no tbptt) and 0th optimizer
            if len(optimizer_idx_outputs) == 0:
                continue

            sample_output = optimizer_idx_outputs[-1]

            # pull out callback info if available (ie: Results object)
            if isinstance(sample_output,
                          dict) and "early_stop_on" in sample_output:
                early_stopping_accumulator.accumulate(
                    sample_output["early_stop_on"])

            if isinstance(sample_output,
                          dict) and "checkpoint_on" in sample_output:
                checkpoint_accumulator.accumulate(
                    sample_output["checkpoint_on"])

            batch_end_outputs.append(optimizer_idx_outputs)

        return batch_end_outputs

    def prepare_optimizers(self):
        # in manual optimization we loop over all optimizers at once
        optimizers = self.get_optimizers_iterable()
        if not self.automatic_optimization:
            optimizers = [optimizers[0]]
        return optimizers

    def run_train_split_start(self, split_idx, split_batch, opt_idx,
                              optimizer):
        # set split_idx to trainer for tracking
        self.trainer.split_idx = split_idx

        # make sure only the gradients of the current optimizer's parameters are calculated
        # in the training step to prevent dangling gradients in multiple-optimizer setup.
        if self.automatic_optimization and len(self.trainer.optimizers) > 1:
            model = self.trainer.get_model()
            model.toggle_optimizer(optimizer, opt_idx)

        # use to track metrics internally
        self.trainer.logger_connector.on_train_split_start(
            split_idx, opt_idx, split_batch)

    def update_running_loss(self):
        accumulated_loss = self.accumulated_loss.mean()

        if accumulated_loss is not None:
            # calculate running loss for display
            self.running_loss.append(self.accumulated_loss.mean() *
                                     self.trainer.accumulate_grad_batches)

        # reset for next set of accumulated grads
        self.accumulated_loss.reset()
Example #11
0
class PredictionEpochLoop(Loop):
    """Loop performing prediction on arbitrary sequentially used dataloaders."""
    def __init__(self) -> None:
        super().__init__()
        self.return_predictions = False
        self.predictions: List[Any] = []
        self.current_batch_indices: List[int] = []
        self.batch_progress = Progress()

        self._dl_max_batches = 0
        self._num_dataloaders = 0
        self._warning_cache = WarningCache()
        self._seen_batch_indices: List[List[int]] = []

    @property
    def done(self) -> bool:
        """Ends prediction when the iteration count exceeds the total number of available batches."""
        return self.batch_progress.current.completed >= self._dl_max_batches

    @property
    def should_store_predictions(self) -> bool:
        """Whether the predictions should be stored for later usage (e.g. aggregation or returning)"""
        any_pred = any(cb.interval.on_epoch
                       for cb in self.trainer.prediction_writer_callbacks)
        return self.return_predictions or any_pred

    def connect(self, **kwargs: "Loop") -> None:
        raise NotImplementedError(
            f"{self.__class__.__name__} does not connect any child loops.")

    def reset(self) -> None:
        """Resets the loops internal state."""
        self._seen_batch_indices = []
        self.predictions = []
        self.batch_progress.reset_on_run()

    def on_run_start(  # type: ignore[override]
        self,
        dataloader_iter: Iterator,
        dataloader_idx: int,
        dl_max_batches: int,
        num_dataloaders: int,
        return_predictions: bool = False,
    ) -> None:
        """Prepares the loops internal state.

        Args:
            dataloader_iter: the iterator over the current dataloader
            dataloader_idx: the index of the current dataloader
            dl_max_batches: the maximum number of batches the current loader can produce
            num_dataloaders: the total number of dataloaders
            return_predictions: whether to return the obtained predictions
        """
        void(dataloader_iter, dataloader_idx)
        self._dl_max_batches = dl_max_batches
        self._num_dataloaders = num_dataloaders
        self.return_predictions = return_predictions
        # this call requires that `self.return_predictions` is set
        self._seen_batch_indices = self._get_batch_indices(dataloader_idx)

    def advance(  # type: ignore[override]
        self,
        dataloader_iter: Iterator,
        dataloader_idx: int,
        dl_max_batches: int,
        num_dataloaders: int,
        return_predictions: bool = False,
    ) -> None:
        """Runs one prediction step.

        Args:
            dataloader_iter: the iterator over the current dataloader
            dataloader_idx: the index of the current dataloader
            dl_max_batches: the maximum number of batches the current loader can produce
            num_dataloaders: the total number of dataloaders
            return_predictions: whether to return the obtained predictions
        """
        batch_idx, batch = next(dataloader_iter)
        self._seen_batch_indices = self._get_batch_indices(dataloader_idx)
        # we need to truncate the list of batch indices due to prefetching in the dataloader and Lightning
        self._seen_batch_indices = self._seen_batch_indices[:(
            self.batch_progress.current.completed + 1)]

        if batch is None:
            raise StopIteration

        batch = self.trainer._call_strategy_hook("batch_to_device",
                                                 batch,
                                                 dataloader_idx=dataloader_idx)

        self.batch_progress.increment_ready()

        self._predict_step(batch, batch_idx, dataloader_idx)

    def on_run_end(self) -> Tuple[List[Any], List[List[int]]]:
        """Returns the predictions and the corresponding batch indices."""
        predictions, all_batch_indices = self.predictions, self._seen_batch_indices
        self.predictions, self._seen_batch_indices = [], []  # free memory
        return predictions, all_batch_indices

    def _predict_step(self, batch: Any, batch_idx: int,
                      dataloader_idx: int) -> None:
        """Runs the actual predict step together with all the necessary bookkeeping and the hooks tied to the
        predict step.

        Args:
            batch: the current batch to run the prediction on
            batch_idx: the index of the current batch
            dataloader_idx: the index of the dataloader producing the current batch
        """
        # configure step_kwargs
        step_kwargs = self._build_kwargs(batch, batch_idx, dataloader_idx)

        # extract batch_indices and store them
        self.current_batch_indices = self._seen_batch_indices[
            batch_idx] if self._seen_batch_indices else []

        self.trainer._call_callback_hooks("on_predict_batch_start", batch,
                                          batch_idx, dataloader_idx)
        self.trainer._call_lightning_module_hook("on_predict_batch_start",
                                                 batch, batch_idx,
                                                 dataloader_idx)

        self.batch_progress.increment_started()

        predictions = self.trainer._call_strategy_hook("predict_step",
                                                       *step_kwargs.values())

        self.batch_progress.increment_processed()

        if predictions is None:
            self._warning_cache.warn(
                "predict returned None if it was on purpose, ignore this warning..."
            )

        self.trainer._call_callback_hooks("on_predict_batch_end", predictions,
                                          batch, batch_idx, dataloader_idx)
        self.trainer._call_lightning_module_hook("on_predict_batch_end",
                                                 predictions, batch, batch_idx,
                                                 dataloader_idx)

        self.batch_progress.increment_completed()

        if self.should_store_predictions:
            self.predictions.append(
                move_data_to_device(predictions, torch.device("cpu")))

    def _build_kwargs(self, batch: Any, batch_idx: int,
                      dataloader_idx: int) -> Dict[str, Any]:
        """Assembles the keyword arguments for the ``predict_step``

        Args:
            batch: the current batch to run the prediction on
            batch_idx: the index of the current batch
            dataloader_idx: the index of the dataloader producing the current batch

        Returns:
            the dictionary containing all the keyboard arguments for the predict step
        """
        step_kwargs = OrderedDict([("batch", batch), ("batch_idx", batch_idx)])
        if self._num_dataloaders > 1:
            step_kwargs["dataloader_idx"] = dataloader_idx
        return step_kwargs

    def _get_batch_indices(self, dataloader_idx: int) -> List[List[int]]:
        """Returns a reference to the seen batch indices if the dataloader has a batch sampler wrapped by our
        :class:`~pytorch_lightning.overrides.distributed.IndexBatchSamplerWrapper`."""
        # the batch_sampler is not be defined in case of CombinedDataLoaders
        batch_sampler = getattr(
            self.trainer.
            predict_dataloaders[dataloader_idx],  # type: ignore[has-type]
            "batch_sampler",
            None,
        )
        if isinstance(
                batch_sampler,
                IndexBatchSamplerWrapper) and self.should_store_predictions:
            return batch_sampler.seen_batch_indices

        warning_cache.warn(
            "Lightning couldn't infer the indices fetched for your dataloader."
        )
        return []
class TrainLoop:
    def __init__(
        self,
        trainer,
        max_epochs: Optional[int],
        min_epochs: Optional[int],
        max_steps: Optional[int],
        min_steps: Optional[int],
        num_sanity_val_steps: int,
    ):
        self.trainer = trainer
        self.accumulated_loss = None
        self.warning_cache = WarningCache()
        self._teardown_already_run = False
        self.running_loss = TensorRunningAccum(window_length=20)
        self._skip_backward = False
        self._optimizer_freq_cumsum = None
        self._hiddens = None

        self.global_step = 0
        self.current_epoch = 0
        self.trainer.should_stop = False

        # the total batch index across all epochs
        self.total_batch_idx = 0
        # the current batch index in the loop that runs over the dataloader(s)
        self.batch_idx = 0
        # the current split index when the batch gets split into chunks in truncated backprop through time
        self.split_idx = None

        self.trainer.num_training_batches = 0
        self.trainer.train_dataloader = None

        # If neither max_epochs or max_steps is set, then use existing default of max_epochs = 1000
        self.max_epochs = 1000 if (max_epochs is None
                                   and max_steps is None) else max_epochs
        # If neither min_epochs or min_steps is set, then use existing default of min_epochs = 1
        self.min_epochs = 1 if (min_epochs is None
                                and min_steps is None) else min_epochs
        self.max_steps = max_steps
        self.min_steps = min_steps

        if num_sanity_val_steps == -1:
            self.trainer.num_sanity_val_steps = float("inf")
        else:
            self.trainer.num_sanity_val_steps = num_sanity_val_steps

    @property
    def num_active_optimizers(self) -> int:
        return len(self.get_active_optimizers())

    @property
    def optimizer_freq_cumsum(self):
        if self._optimizer_freq_cumsum is None:
            self._optimizer_freq_cumsum = np.cumsum(
                self.trainer.optimizer_frequencies)
        return self._optimizer_freq_cumsum

    def should_skip_training(self) -> bool:
        should_by_max_steps = self.max_steps is not None and self.global_step >= self.max_steps
        should_by_epoch = self.max_epochs is not None and self.current_epoch >= self.max_epochs
        return should_by_max_steps or should_by_epoch or self.trainer.num_training_batches == 0

    def on_train_start(self):
        # hook
        self.trainer.call_hook("on_train_start")

    def on_train_end(self):
        if self._teardown_already_run:
            return
        self._teardown_already_run = True

        # trigger checkpoint check. need to temporarily decrease the global step to avoid saving duplicates
        # when a checkpoint was saved at the last step
        self.global_step -= 1
        self.check_checkpoint_callback(should_update=True, is_last=True)
        self.global_step += 1

        # hook
        self.trainer.call_hook("on_train_end")

        # todo: TPU 8 cores hangs in flush with TensorBoard. Might do for all loggers.
        # It might be related to xla tensors blocked when moving the cpu
        # kill loggers
        if self.trainer.logger is not None:
            self.trainer.logger.finalize("success")

        # summarize profile results
        self.trainer.profiler.describe()

        # give accelerators a chance to finish
        self.trainer.accelerator.on_train_end()

        # reset bookkeeping
        self.trainer.state.stage = None

    def check_checkpoint_callback(self, should_update, is_last=False):
        # TODO bake this logic into the ModelCheckpoint callback
        if should_update and self.trainer.checkpoint_connector.has_trained:
            callbacks = self.trainer.checkpoint_callbacks

            if is_last and any(cb.save_last and cb.verbose
                               for cb in callbacks):
                rank_zero_info("Saving latest checkpoint...")

            model = self.trainer.lightning_module

            for cb in callbacks:
                cb.on_validation_end(self.trainer, model)

    def on_train_epoch_start(self, epoch):

        # update training progress in trainer
        self.current_epoch = epoch

        model = self.trainer.lightning_module

        # reset train dataloader
        if epoch != 0 and self.trainer.reload_dataloaders_every_epoch:
            self.trainer.reset_train_dataloader(model)

        # todo: specify the possible exception
        with suppress(Exception):
            # set seed for distributed sampler (enables shuffling for each epoch)
            self.trainer.train_dataloader.sampler.set_epoch(epoch)

        # changing gradient according accumulation_scheduler
        self.trainer.accumulation_scheduler.on_train_epoch_start(
            self.trainer, self.trainer.lightning_module)

        # stores accumulated grad fractions per batch
        self.accumulated_loss = TensorRunningAccum(
            window_length=self.trainer.accumulate_grad_batches)

        # hook
        self.trainer.call_hook("on_epoch_start")
        self.trainer.call_hook("on_train_epoch_start")

    def on_train_batch_end(self, epoch_output, batch_end_outputs, batch,
                           batch_idx, dataloader_idx):
        batch_end_outputs = [
            opt_idx_out for opt_idx_out in batch_end_outputs
            if len(opt_idx_out)
        ]

        processed_batch_end_outputs = TrainLoop._prepare_outputs(
            batch_end_outputs, batch_mode=True)

        # hook
        self.trainer.call_hook('on_train_batch_end',
                               processed_batch_end_outputs, batch, batch_idx,
                               dataloader_idx)
        self.trainer.call_hook('on_batch_end')

        # figure out what to track for epoch end
        self.track_epoch_end_reduce_metrics(epoch_output, batch_end_outputs)

        # reset batch logger internals
        self.trainer.logger_connector.on_train_batch_end()

    def reset_train_val_dataloaders(self, model) -> None:
        """
        Resets train and val dataloaders if none are attached to the trainer.

        The val dataloader must be initialized before training loop starts, as the training loop
        inspects the val dataloader to determine whether to run the evaluation loop.
        """
        if self.trainer.train_dataloader is None:
            self.trainer.reset_train_dataloader(model)

        if self.trainer.val_dataloaders is None:
            self.trainer.reset_val_dataloader(model)

    def track_epoch_end_reduce_metrics(self, epoch_output, batch_end_outputs):

        hook_overridden = self._should_add_batch_output_to_epoch_output()

        # track the outputs to reduce at the end of the epoch
        for opt_idx, opt_outputs in enumerate(batch_end_outputs):
            sample_output = opt_outputs[-1]

            # decide if we need to reduce at the end of the epoch automatically
            auto_reduce_tng_result = isinstance(
                sample_output,
                Result) and sample_output.should_reduce_on_epoch_end

            # only track when a) it needs to be autoreduced OR b) the user wants to manually reduce on epoch end
            if not (hook_overridden or auto_reduce_tng_result):
                continue

            # with 1 step (no tbptt) don't use a sequence at epoch end
            if isinstance(opt_outputs,
                          list) and len(opt_outputs) == 1 and not isinstance(
                              opt_outputs[0], Result):
                opt_outputs = opt_outputs[0]

            epoch_output[opt_idx].append(opt_outputs)

    def _should_add_batch_output_to_epoch_output(self) -> bool:
        # We add to the epoch outputs if
        # 1. The model defines training_epoch_end OR
        # 2. The model overrides on_train_epoch_end which has `outputs` in the signature
        # TODO: in v1.5 this only needs to check if training_epoch_end is overridden
        lightning_module = self.trainer.lightning_module
        if is_overridden("training_epoch_end", model=lightning_module):
            return True

        if is_overridden("on_train_epoch_end", model=lightning_module):
            model_hook_fx = getattr(lightning_module, "on_train_epoch_end")
            if is_param_in_hook_signature(model_hook_fx, "outputs"):
                return True

        return False

    def get_active_optimizers(
            self,
            batch_idx: Optional[int] = None) -> List[Tuple[int, Optimizer]]:
        """
        Returns the currently active optimizers. When multiple optimizers are used with different frequencies,
        only one of the optimizers is active at a time.

        Returns:
            A list of tuples (opt_idx, optimizer) of currently active optimizers.
        """
        if not self.trainer.optimizer_frequencies:
            # call training_step once per optimizer
            return list(enumerate(self.trainer.optimizers))

        batch_idx = self.total_batch_idx if batch_idx is None else batch_idx
        optimizers_loop_length = self.optimizer_freq_cumsum[-1]
        current_place_in_loop = batch_idx % optimizers_loop_length

        # find optimzier index by looking for the first {item > current_place} in the cumsum list
        opt_idx = int(
            np.argmax(self.optimizer_freq_cumsum > current_place_in_loop))
        return [(opt_idx, self.trainer.optimizers[opt_idx])]

    def on_after_backward(self, training_step_output, batch_idx,
                          untouched_loss):
        training_step_output.detach()

        # insert after step hook
        self.trainer.call_hook("on_after_backward")

        # when in dev debugging track the losses
        self.trainer.dev_debugger.track_train_loss_history(
            batch_idx, untouched_loss.detach())

    def _check_training_step_output(self, training_step_output):
        if isinstance(
                training_step_output, torch.Tensor
        ) and not self.trainer.lightning_module.automatic_optimization:
            if training_step_output.grad_fn is None:
                # TODO: Find why - RuntimeError: Expected to mark a variable ready only once ...
                raise MisconfigurationException(
                    "In manual optimization, `training_step` should not return a Tensor"
                )

    def training_step(self, split_batch, batch_idx, opt_idx, hiddens):
        # give the PL module a result for logging
        model_ref = self.trainer.lightning_module

        with self.trainer.profiler.profile("model_forward"):
            step_kwargs = self._build_kwargs(split_batch, batch_idx, opt_idx,
                                             hiddens)

            # manually capture logged metrics
            model_ref._current_fx_name = 'training_step'
            model_ref._results = Result()
            with self.trainer.profiler.profile("training_step"):
                training_step_output = self.trainer.accelerator.training_step(
                    step_kwargs)
                self.trainer.accelerator.post_training_step()

            self.trainer.logger_connector.cache_logged_metrics()

            self._check_training_step_output(training_step_output)

            training_step_output = self.trainer.call_hook(
                "training_step_end", training_step_output)

            training_step_output_for_epoch_end, training_step_output = self._process_training_step_output(
                training_step_output, split_batch)
            if training_step_output_for_epoch_end is None:
                return

        # enable empty loss when using manual opt
        closure_loss = None
        untouched_loss = None

        if self.trainer.lightning_module.automatic_optimization:
            # accumulate loss. if accumulate_grad_batches==1, no effect
            closure_loss = training_step_output.minimize / self.trainer.accumulate_grad_batches

            # the loss will get scaled for amp. avoid any modifications to it
            untouched_loss = closure_loss.detach().clone()

        # result
        result = AttributeDict(
            closure_loss=closure_loss,
            loss=untouched_loss,
            training_step_output=training_step_output,
            training_step_output_for_epoch_end=
            training_step_output_for_epoch_end,
        )
        return result

    def _process_training_step_output(self, training_step_output, split_batch):
        training_step_output_for_epoch_end = training_step_output

        # enable validation_step return None
        if training_step_output_for_epoch_end is None:
            return None, None

        result = self.trainer.lightning_module._results

        loss = None
        hiddens = None
        result["extra"] = {}

        # handle dict return
        if isinstance(training_step_output, dict):
            loss = training_step_output.pop("loss", None)
            hiddens = training_step_output.pop("hiddens", None)
            if hiddens is not None:
                hiddens = hiddens.detach()
            result["extra"] = training_step_output

        # handle scalar return
        elif isinstance(training_step_output, torch.Tensor):
            loss = training_step_output

        # map to results under the hood
        result.minimize = loss
        self._hiddens = hiddens

        # track batch for manual reduction with result
        result.track_batch_size(len(split_batch))

        # track metrics without grads for epoch reduction
        training_step_output_for_epoch_end = copy(result)
        training_step_output_for_epoch_end = training_step_output_for_epoch_end.detach(
        )
        if self.trainer.move_metrics_to_cpu:
            training_step_output_for_epoch_end = training_step_output_for_epoch_end.cpu(
            )

        return training_step_output_for_epoch_end, result

    @staticmethod
    def _prepare_outputs(
        outputs: List[List[List[Result]]],
        batch_mode: bool,
    ) -> Union[List[List[List[Dict]]], List[List[Dict]], List[Dict], Dict]:
        """
        Extract required information from batch or epoch end results.

        Args:
            outputs: A 3-dimensional list of ``Result`` objects with dimensions:
                [optimizer outs][batch outs][tbptt steps].

            batch_mode: If True, ignore the batch output dimension.

        Returns:
            The cleaned outputs with ``Result`` objects converted to dictionaries. All list dimensions of size one will
            be collapsed.
        """
        processed_outputs = []
        for opt_outputs in outputs:
            # handle an edge case where an optimizer output is the empty list
            if len(opt_outputs) == 0:
                continue

            processed_batch_outputs = []

            if batch_mode:
                opt_outputs = [opt_outputs]

            for batch_outputs in opt_outputs:
                processed_tbptt_outputs = []

                for tbptt_output in batch_outputs:
                    out = tbptt_output.extra
                    out['loss'] = tbptt_output.minimize
                    processed_tbptt_outputs.append(out)

                # if there was only one tbptt step then we can collapse that dimension
                if len(processed_tbptt_outputs) == 1:
                    processed_tbptt_outputs = processed_tbptt_outputs[0]
                processed_batch_outputs.append(processed_tbptt_outputs)

            # batch_outputs should be just one dict (or a list of dicts if using tbptt) per optimizer
            if batch_mode:
                processed_batch_outputs = processed_batch_outputs[0]
            processed_outputs.append(processed_batch_outputs)

        # if there is only one optimiser then we collapse that dimension
        if len(processed_outputs) == 1:
            processed_outputs = processed_outputs[0]
        return processed_outputs

    def optimizer_step(self, optimizer, opt_idx, batch_idx,
                       train_step_and_backward_closure):
        model_ref = self.trainer.lightning_module

        is_lbfgs = isinstance(optimizer, torch.optim.LBFGS)
        using_native_amp = self.trainer.amp_backend == AMPType.NATIVE

        # native amp + lbfgs is a no go right now
        if using_native_amp and is_lbfgs:
            raise MisconfigurationException(
                'native PyTorch amp and lbfgs are not compatible.'
                ' To request, please file a Github issue in PyTorch and tag @mcarilli'
            )

        # wraps into LightningOptimizer only for running step
        optimizer = LightningOptimizer._to_lightning_optimizer(
            optimizer, self.trainer, opt_idx)

        # model hook
        model_ref.optimizer_step(
            self.trainer.current_epoch,
            batch_idx,
            optimizer,
            opt_idx,
            train_step_and_backward_closure,
            on_tpu=self.trainer._device_type == DeviceType.TPU
            and _TPU_AVAILABLE,
            using_native_amp=using_native_amp,
            using_lbfgs=is_lbfgs,
        )

    def on_before_zero_grad(self, optimizer):
        self.trainer.call_hook('on_before_zero_grad', optimizer)

    def optimizer_zero_grad(self, batch_idx, optimizer, opt_idx):
        self.trainer.accelerator.optimizer_zero_grad(
            self.trainer.current_epoch, batch_idx, optimizer, opt_idx)

    def track_and_norm_grad(self, optimizer) -> dict:
        # track gradient norms
        grad_norm_dict = self._track_gradient_norm()

        # clip gradients
        self.trainer.accelerator.clip_gradients(
            optimizer,
            self.trainer.gradient_clip_val,
            gradient_clip_algorithm=self.trainer.gradient_clip_algorithm)
        return grad_norm_dict

    def _track_gradient_norm(self):
        grad_norm_dict = {}
        if (self.global_step + 1) % self.trainer.log_every_n_steps == 0:
            if float(self.trainer.track_grad_norm) > 0:
                model = self.trainer.lightning_module
                grad_norm_dict = grad_norm(model, self.trainer.track_grad_norm)
        return grad_norm_dict

    def _tbptt_split_batch(self, batch: Any) -> List[Any]:
        splits = [batch]
        truncated_bptt_enabled = self._truncated_bptt_enabled()
        if truncated_bptt_enabled:
            model_ref = self.trainer.lightning_module
            with self.trainer.profiler.profile("tbptt_split_batch"):
                splits = model_ref.tbptt_split_batch(
                    batch, self._truncated_bptt_steps())
        return splits

    def run_training_epoch(self):
        # modify dataloader if needed (ddp, etc...)
        train_dataloader = self.trainer.accelerator.process_dataloader(
            self.trainer.train_dataloader)

        # track epoch output
        epoch_output = [[] for _ in range(self.num_active_optimizers)]

        train_dataloader = self.trainer.data_connector.get_profiled_train_dataloader(
            train_dataloader)
        dataloader_idx = 0
        batch_idx = None

        for batch_idx, (batch, is_last_batch) in train_dataloader:
            self.batch_idx = batch_idx

            # ------------------------------------
            # TRAINING_STEP + TRAINING_STEP_END
            # ------------------------------------
            with self.trainer.profiler.profile("run_training_batch"):
                batch_output = self.run_training_batch(batch, batch_idx,
                                                       dataloader_idx)

            # when returning -1 from train_step, we end epoch early
            if batch_output.signal == -1:
                break

            # hook
            # TODO: add outputs to batches
            self.on_train_batch_end(
                epoch_output,
                batch_output.training_step_output_for_epoch_end,
                batch,
                batch_idx,
                dataloader_idx,
            )

            # -----------------------------------------
            # SAVE METRICS TO LOGGERS
            # -----------------------------------------
            self.trainer.logger_connector.log_train_step_metrics(batch_output)

            # -----------------------------------------
            # VALIDATE IF NEEDED
            # -----------------------------------------
            should_check_val = self._should_check_val_fx(
                batch_idx, is_last_batch)
            if should_check_val:
                self.trainer.validating = True
                self.trainer._run_evaluation()
                self.trainer.training = True

            # -----------------------------------------
            # SAVE LOGGERS (ie: Tensorboard, etc...)
            # -----------------------------------------
            self.save_loggers_on_train_batch_end()

            # update LR schedulers
            self.update_lr_schedulers('step')
            self.trainer.checkpoint_connector.has_trained = True

            self.total_batch_idx += 1

            # progress global step according to grads progress
            self.increment_accumulated_grad_global_step()

            max_steps_reached = (self.max_steps is not None
                                 and self.max_steps <= self.global_step)
            if max_steps_reached or self.trainer.should_stop or self._num_training_batches_reached(
                    is_last_batch):
                break

        if batch_idx is None:
            # dataloader/iterator did not produce a batch
            return

        # handle epoch_output on epoch end
        self.on_train_epoch_end(epoch_output)

        # the global step is manually decreased here due to backwards compatibility with existing loggers
        # as they expect that the same step is used when logging epoch end metrics even when the batch loop has
        # finished. this means the attribute does not exactly track the number of optimizer steps applied.
        # TODO(@carmocca): deprecate and rename so users don't get confused
        self.global_step -= 1
        # log epoch metrics
        self.trainer.logger_connector.log_train_epoch_end_metrics(epoch_output)
        self.global_step += 1

        self.update_lr_schedulers('epoch')

        did_train_only = self.trainer.disable_validation or self.trainer.evaluation_loop.should_skip_evaluation(
            self.trainer.num_val_batches)
        if did_train_only:
            self.global_step -= 1
            self.check_checkpoint_callback(True)
            self.global_step += 1

    def on_train_epoch_end(self,
                           epoch_output: List[List[List[Result]]]) -> None:
        # inform logger the batch loop has finished
        self.trainer.logger_connector.on_train_epoch_end()

        # prepare epoch output
        processed_epoch_output = TrainLoop._prepare_outputs(epoch_output,
                                                            batch_mode=False)

        # get the model and call model.training_epoch_end
        model = self.trainer.lightning_module

        if is_overridden('training_epoch_end', model=model):
            # run training_epoch_end
            # refresh the result for custom logging at the epoch level
            model._current_fx_name = 'training_epoch_end'
            training_epoch_end_output = model.training_epoch_end(
                processed_epoch_output)

            if training_epoch_end_output is not None:
                raise MisconfigurationException(
                    'training_epoch_end expects a return of None. '
                    'HINT: remove the return statement in training_epoch_end')

            # capture logging
            self.trainer.logger_connector.cache_logged_metrics()

        # call train epoch end hooks
        self._on_train_epoch_end_hook(processed_epoch_output)
        self.trainer.call_hook('on_epoch_end')

    def _on_train_epoch_end_hook(self, processed_epoch_output) -> None:
        # We cannot rely on Trainer.call_hook because the signatures might be different across
        # lightning module and callback
        # As a result, we need to inspect if the module accepts `outputs` in `on_train_epoch_end`

        # This implementation is copied from Trainer.call_hook
        hook_name = "on_train_epoch_end"

        # set hook_name to model + reset Result obj
        skip = self.trainer._reset_result_and_set_fx_name(hook_name)

        # always profile hooks
        with self.trainer.profiler.profile(hook_name):

            # first call trainer hook
            if hasattr(self.trainer, hook_name):
                trainer_hook = getattr(self.trainer, hook_name)
                trainer_hook(processed_epoch_output)

            # next call hook in lightningModule
            model_ref = self.trainer.lightning_module
            if is_overridden(hook_name, model_ref):
                hook_fx = getattr(model_ref, hook_name)
                if is_param_in_hook_signature(hook_fx, "outputs"):
                    self.warning_cache.warn(
                        "The signature of `ModelHooks.on_train_epoch_end` has changed in v1.3."
                        " `outputs` parameter has been deprecated."
                        " Support for the old signature will be removed in v1.5",
                        DeprecationWarning)
                    model_ref.on_train_epoch_end(processed_epoch_output)
                else:
                    model_ref.on_train_epoch_end()

            # if the PL module doesn't have the hook then call the accelerator
            # used to auto-reduce things for the user with Results obj
            elif hasattr(self.trainer.accelerator, hook_name):
                accelerator_hook = getattr(self.trainer.accelerator, hook_name)
                accelerator_hook()

        if not skip:
            self.trainer._cache_logged_metrics()

    def run_training_batch(self, batch, batch_idx, dataloader_idx):
        # track grad norms
        grad_norm_dict = {}

        # bookkeeping
        self._hiddens = None

        optimizers = list(enumerate(self.trainer.optimizers))

        # track all outputs across time and num of optimizers
        batch_outputs = [[] for _ in range(len(optimizers))]

        if batch is None:
            self.warning_cache.warn(
                "train_dataloader yielded None. If this was on purpose, ignore this warning..."
            )
            return AttributeDict(
                signal=0,
                grad_norm_dict={},
                training_step_output_for_epoch_end=batch_outputs,
            )

        # hook
        response = self.trainer.call_hook("on_batch_start")
        if response == -1:
            return AttributeDict(signal=-1, grad_norm_dict={})

        # hook
        response = self.trainer.call_hook("on_train_batch_start", batch,
                                          batch_idx, dataloader_idx)
        if response == -1:
            return AttributeDict(signal=-1, grad_norm_dict={})

        # lightning module hook
        splits = self._tbptt_split_batch(batch)

        for split_idx, split_batch in enumerate(splits):
            self.split_idx = split_idx

            if self.trainer.lightning_module.automatic_optimization:
                for opt_idx, optimizer in self.get_active_optimizers(
                        batch_idx):
                    result = self._run_optimization(batch_idx, split_idx,
                                                    split_batch, opt_idx,
                                                    optimizer)
                    if result:
                        batch_outputs[opt_idx].append(
                            result.training_step_output_for_epoch_end)
                        grad_norm_dict = result.get("grad_norm_dict", {})
            else:
                # in manual optimization, there is no looping over optimizers
                result = self._run_optimization(batch_idx, split_idx,
                                                split_batch)
                if result:
                    batch_outputs[0].append(
                        result.training_step_output_for_epoch_end)

        output = AttributeDict(
            signal=0,
            # todo: Properly aggregate grad_norm accros opt_idx and split_idx
            grad_norm_dict=grad_norm_dict,
            training_step_output_for_epoch_end=batch_outputs,
        )
        return output

    def _run_optimization(self,
                          batch_idx,
                          split_idx,
                          split_batch,
                          opt_idx=0,
                          optimizer=None):
        # TODO: In v1.5, when optimizer_idx gets removed from training_step in manual_optimization, change
        #   opt_idx=0 to opt_idx=None in the signature here

        # toggle model params + set info to logger_connector
        self.run_train_split_start(split_idx, split_batch, opt_idx, optimizer)

        result = AttributeDict()
        closure = self.make_closure(split_batch, batch_idx, opt_idx, optimizer,
                                    self._hiddens, result)

        if self.should_accumulate():
            # For gradient accumulation

            # -------------------
            # calculate loss (train step + train step end)
            # -------------------
            # automatic_optimization=True: perform ddp sync only when performing optimizer_step
            # automatic_optimization=False: don't block synchronization here
            with self.block_ddp_sync_behaviour():
                closure()

        # ------------------------------
        # BACKWARD PASS
        # ------------------------------
        # gradient update with accumulated gradients
        else:
            if self.trainer.lightning_module.automatic_optimization:
                self.optimizer_step(optimizer, opt_idx, batch_idx, closure)
                if len(self.trainer.optimizers) > 1:
                    # revert back to previous state
                    self.trainer.lightning_module.untoggle_optimizer(opt_idx)
            else:
                result = self.training_step(split_batch, batch_idx, opt_idx,
                                            self._hiddens)

            if not result:
                # user decided to skip optimization
                return result

            # update running loss + reset accumulated loss
            self.update_running_loss(result.loss)

        self._process_closure_result(result)
        return result

    def training_step_and_backward_closure(
        self,
        split_batch: Any,
        batch_idx: int,
        opt_idx: int,
        optimizer: Optimizer,
        hiddens,
        return_result: AttributeDict,
    ) -> Optional[torch.Tensor]:

        result = self.training_step_and_backward(split_batch, batch_idx,
                                                 opt_idx, optimizer, hiddens)
        if result is not None:
            return_result.update(result)
            return return_result.loss

    def make_closure(self, *closure_args, **closure_kwargs: Any) -> Callable:
        """ Wraps the training step closure into a partial object which will be called within ``optimizer.step``. """
        partial_func = partial(self.training_step_and_backward_closure,
                               *closure_args, **closure_kwargs)
        return update_wrapper(partial_func,
                              self.training_step_and_backward_closure)

    @contextmanager
    def block_ddp_sync_behaviour(self, should_block_sync: bool = False):
        """
        automatic_optimization = True
        Blocks ddp sync gradients behaviour on backwards pass.
        This is useful for skipping sync when accumulating gradients, reducing communication overhead

        automatic_optimization = False
        do not block ddp gradient sync when using manual optimization
        as gradients are needed within the training step

        Returns:
            context manager with sync behaviour off

        """
        if (isinstance(self.trainer.training_type_plugin, ParallelPlugin)
                and (self.trainer.lightning_module.automatic_optimization
                     or should_block_sync)):
            with self.trainer.training_type_plugin.block_backward_sync():
                yield None
        else:
            yield None

    def _process_closure_result(
            self, opt_closure_result: Optional[AttributeDict]) -> None:
        if not opt_closure_result:
            return

        # cache metrics
        self.trainer.logger_connector.cache_training_step_metrics(
            opt_closure_result)

        # check if loss or model weights are nan
        if self.trainer.terminate_on_nan:
            self._check_finite(opt_closure_result.loss)

    def training_step_and_backward(self, split_batch, batch_idx, opt_idx,
                                   optimizer, hiddens):
        """Wrap forward, zero_grad and backward in a closure so second order methods work"""
        with self.trainer.profiler.profile("training_step_and_backward"):
            # lightning module hook
            result = self.training_step(split_batch, batch_idx, opt_idx,
                                        hiddens)

            if not self._skip_backward and self.trainer.lightning_module.automatic_optimization:
                is_first_batch_to_accumulate = batch_idx % self.trainer.accumulate_grad_batches == 0

                if is_first_batch_to_accumulate:
                    self.on_before_zero_grad(optimizer)
                    self.optimizer_zero_grad(batch_idx, optimizer, opt_idx)

                # backward pass
                if result is not None:
                    with self.trainer.profiler.profile("backward"):
                        self.backward(result, optimizer, opt_idx)

                    # hook - call this hook only
                    # when gradients have finished to accumulate
                    if not self.should_accumulate():
                        self.on_after_backward(result.training_step_output,
                                               batch_idx, result.loss)

                    # check if loss or model weights are nan
                    if self.trainer.terminate_on_nan:
                        self._check_finite(result.loss)

                else:
                    self.warning_cache.warn(
                        "training_step returned None. If this was on purpose, ignore this warning..."
                    )

        return result

    def _check_finite(self, loss: torch.Tensor) -> None:
        if not torch.isfinite(loss).all():
            raise ValueError(
                f'The loss returned in `training_step` is {loss}.')
        model = self.trainer.lightning_module
        detect_nan_parameters(model)

    def backward(self, result, optimizer, opt_idx, *args, **kwargs):
        self.trainer.dev_debugger.track_event("backward_call")

        should_accumulate = self.should_accumulate()

        # backward can be called manually in the training loop
        if isinstance(result, torch.Tensor):
            self.trainer.accelerator.backward(result, optimizer, opt_idx,
                                              should_accumulate, *args,
                                              **kwargs)
        else:
            result.closure_loss = self.trainer.accelerator.backward(
                result.closure_loss, optimizer, opt_idx, should_accumulate,
                *args, **kwargs)

        if not self.should_accumulate():
            # track gradients
            result.grad_norm_dict = self.track_and_norm_grad(
                optimizer=optimizer)

    def update_lr_schedulers(self, interval: str) -> None:
        if interval == "step":
            finished_accumulation = self._accumulated_batches_reached()
            finished_epoch = self._num_training_batches_reached()
            if not finished_accumulation and not finished_epoch:
                return
        self.trainer.optimizer_connector.update_learning_rates(
            interval=interval,
            opt_indices=[
                opt_idx for opt_idx, _ in self.get_active_optimizers()
            ],
        )

    def increment_accumulated_grad_global_step(self):
        num_accumulated_batches_reached = self._accumulated_batches_reached()
        num_training_batches_reached = self._num_training_batches_reached()

        # progress global step according to grads progress
        if num_accumulated_batches_reached or num_training_batches_reached:
            self.global_step = self.trainer.accelerator.update_global_step(
                self.total_batch_idx, self.global_step)

    def _accumulated_batches_reached(self):
        return (self.batch_idx + 1) % self.trainer.accumulate_grad_batches == 0

    def _num_training_batches_reached(self, is_last_batch=False):
        return (self.batch_idx +
                1) == self.trainer.num_training_batches or is_last_batch

    def should_accumulate(self):
        # checks if backward or backward + optimizer step (via closure)
        accumulation_done = self._accumulated_batches_reached()
        is_final_batch = self._num_training_batches_reached()
        return not (accumulation_done or is_final_batch)

    def _should_check_val_fx(self, batch_idx: int,
                             is_last_batch: bool) -> bool:
        """ Decide if we should run validation. """
        if not self.trainer.enable_validation:
            return False

        is_val_check_epoch = (self.trainer.current_epoch +
                              1) % self.trainer.check_val_every_n_epoch == 0
        if not is_val_check_epoch:
            return False

        # val_check_batch is inf for iterable datasets with no length defined
        is_infinite_dataset = self.trainer.val_check_batch == float('inf')
        if is_last_batch and is_infinite_dataset:
            return True

        if self.trainer.should_stop:
            return True

        # TODO: let training/eval loop handle logic around limit_*_batches and val_check_batch
        is_val_check_batch = is_last_batch
        if isinstance(self.trainer.limit_train_batches,
                      int) and is_infinite_dataset:
            is_val_check_batch = (batch_idx +
                                  1) % self.trainer.limit_train_batches == 0
        elif self.trainer.val_check_batch != float('inf'):
            is_val_check_batch = (batch_idx +
                                  1) % self.trainer.val_check_batch == 0
        return is_val_check_batch

    def _build_kwargs(self, batch, batch_idx, opt_idx, hiddens):
        # enable not needing to add opt_idx to training_step
        step_kwargs = OrderedDict([('batch', batch), ('batch_idx', batch_idx)])

        lightning_module = self.trainer.lightning_module

        if len(self.trainer.optimizers) > 1:
            training_step_fx = getattr(lightning_module, "training_step")
            has_opt_idx_in_train_step = is_param_in_hook_signature(
                training_step_fx, "optimizer_idx")
            if has_opt_idx_in_train_step:
                if not lightning_module.automatic_optimization:
                    self.warning_cache.warn(
                        "`training_step` hook signature has changed in v1.3."
                        " `optimizer_idx` argument has been removed in case of manual optimization. Support for"
                        " the old signature will be removed in v1.5",
                        DeprecationWarning)
                step_kwargs['optimizer_idx'] = opt_idx
            elif not has_opt_idx_in_train_step and self.trainer.lightning_module.automatic_optimization:
                raise ValueError(
                    f"Your LightningModule defines {len(self.trainer.optimizers)} optimizers but"
                    ' `training_step` is missing the `optimizer_idx` argument.'
                )

        # pass hiddens if using tbptt
        if self._truncated_bptt_enabled():
            step_kwargs['hiddens'] = hiddens

        return step_kwargs

    def _truncated_bptt_enabled(self) -> bool:
        """ Temporary tbptt utilities until this flag is fully migrated to the lightning module. """
        return self._truncated_bptt_steps() > 0

    def _truncated_bptt_steps(self) -> int:
        lightning_module = self.trainer.lightning_module
        # Give precedence to the LightningModule as the Trainer flag will be removed in v1.5
        if lightning_module.truncated_bptt_steps > 0:
            return lightning_module.truncated_bptt_steps
        return self.trainer.truncated_bptt_steps or 0

    def save_loggers_on_train_batch_end(self):
        # when loggers should save to disk
        should_flush_logs = self.trainer.logger_connector.should_flush_logs
        if should_flush_logs and self.trainer.is_global_zero and self.trainer.logger is not None:
            self.trainer.logger.save()

    def run_train_split_start(self, split_idx, split_batch, opt_idx,
                              optimizer):
        # make sure only the gradients of the current optimizer's parameters are calculated
        # in the training step to prevent dangling gradients in multiple-optimizer setup.
        if self.trainer.lightning_module.automatic_optimization and len(
                self.trainer.optimizers) > 1:
            model = self.trainer.lightning_module
            model.toggle_optimizer(optimizer, opt_idx)

        # use to track metrics internally
        self.trainer.logger_connector.on_train_split_start(
            split_idx, opt_idx, split_batch)

    def update_running_loss(self, current_loss: torch.Tensor) -> None:
        if self.trainer.lightning_module.automatic_optimization:
            # track total loss for logging (avoid mem leaks)
            self.accumulated_loss.append(current_loss)

        accumulated_loss = self.accumulated_loss.mean()

        if accumulated_loss is not None:
            # calculate running loss for display
            self.running_loss.append(self.accumulated_loss.mean() *
                                     self.trainer.accumulate_grad_batches)

        # reset for next set of accumulated grads
        self.accumulated_loss.reset()
class EvaluationLoop(object):
    def __init__(self, trainer):
        self.trainer = trainer
        self.outputs = []
        self.step_metrics = []
        self.predictions = None
        self.max_batches = None
        self.warning_cache = WarningCache()
        self.num_dataloaders = None

    def on_trainer_init(self):
        self.trainer.num_val_batches = []
        self.trainer.num_sanity_val_batches = []
        self.trainer.num_test_batches = []
        self.trainer.test_dataloaders = None
        self.trainer.val_dataloaders = None
        self.trainer.running_sanity_check = False

        # when .test() is called, it sets this
        self.trainer.tested_ckpt_path = None

        # when true, prints test results
        self.trainer.verbose_test = True

    def get_evaluation_dataloaders(self, max_batches):
        # select dataloaders
        model = self.trainer.get_model()

        # select dataloaders
        if self.trainer.testing:
            self.trainer.reset_test_dataloader(model)

            dataloaders = self.trainer.test_dataloaders
            new_max_batches = self.trainer.num_test_batches
        else:
            # val
            in_sanity_check = self.trainer.running_sanity_check
            should_reload_every_epoch = self.trainer.reload_dataloaders_every_epoch
            if (self.trainer.val_dataloaders is None
                    or should_reload_every_epoch) and not in_sanity_check:
                self.trainer.reset_val_dataloader(model)

            dataloaders = self.trainer.val_dataloaders
            new_max_batches = self.trainer.num_val_batches

        if max_batches is None:
            max_batches = new_max_batches

        return dataloaders, max_batches

    def should_skip_evaluation(self, max_batches):
        return sum(max_batches) == 0

    def on_evaluation_start(self, *args, **kwargs):
        if self.trainer.testing:
            self.trainer.call_hook('on_test_start', *args, **kwargs)
        else:
            self.trainer.call_hook('on_validation_start', *args, **kwargs)

    def on_evaluation_model_eval(self, *_, **__):
        model_ref = self.trainer.get_model()
        if self.trainer.testing:
            model_ref.on_test_model_eval()
        else:
            model_ref.on_validation_model_eval()

    def on_evaluation_model_train(self, *_, **__):
        model_ref = self.trainer.get_model()
        if self.trainer.testing:
            model_ref.on_test_model_train()
        else:
            model_ref.on_validation_model_train()

    def on_evaluation_end(self, *args, **kwargs):
        if self.trainer.testing:
            self.trainer.call_hook('on_test_end', *args, **kwargs)
        else:
            self.trainer.call_hook('on_validation_end', *args, **kwargs)

    def reload_evaluation_dataloaders(self):
        model = self.trainer.get_model()
        if self.trainer.testing:
            self.trainer.reset_test_dataloader(model)
        else:
            self.trainer.reset_val_dataloader(model)

    def setup(self, model, max_batches, dataloaders):
        # bookkeeping
        self.outputs = []
        self.predictions = PredictionCollection(self.trainer.global_rank,
                                                self.trainer.world_size)

        # convert max_batches to list
        if isinstance(max_batches, int):
            max_batches = [max_batches] * len(dataloaders)

        self.max_batches = max_batches
        self.num_dataloaders = self._get_num_dataloaders(dataloaders)
        self._predictions = [[] for _ in range(self.num_dataloaders)]

    def on_evaluation_epoch_start(self, *args, **kwargs):
        if self.trainer.testing:
            self.trainer.call_hook('on_test_epoch_start', *args, **kwargs)
        else:
            self.trainer.call_hook('on_validation_epoch_start', *args,
                                   **kwargs)

    def _build_args(self, batch, batch_idx, dataloader_idx):
        # make dataloader_idx arg in validation_step optional
        args = [batch, batch_idx]

        multiple_val_loaders = (
            not self.trainer.testing
            and self._get_num_dataloaders(self.trainer.val_dataloaders) > 1)
        multiple_test_loaders = (
            self.trainer.testing
            and self._get_num_dataloaders(self.trainer.test_dataloaders) > 1)

        if multiple_test_loaders or multiple_val_loaders:
            args.append(dataloader_idx)

        return args

    def _get_num_dataloaders(self, dataloaders):
        # case where user does:
        # return dl1, dl2
        length = len(dataloaders)
        if len(dataloaders) > 0 and isinstance(dataloaders[0], (list, tuple)):
            length = len(dataloaders[0])
        return length

    def evaluation_step(self, batch, batch_idx, dataloader_idx):
        # configure args
        args = self._build_args(batch, batch_idx, dataloader_idx)

        model_ref = self.trainer.get_model()
        model_ref._results = Result()

        if self.trainer._predicting:
            model_ref._current_fx_name = "predict"
            predictions = self.trainer.accelerator_backend.predict(args)
            self._predictions[dataloader_idx].append(predictions)
            self.trainer._progress_bar_callback.on_test_batch_end(
                self.trainer, model_ref, predictions, batch, batch_idx,
                dataloader_idx)
            return

        elif self.testing:
            model_ref._current_fx_name = "test_step"
            with self.trainer.profiler.profile("test_step"):
                output = self.trainer.accelerator_backend.test_step(args)
        else:
            model_ref._current_fx_name = "validation_step"
            with self.trainer.profiler.profile("validation_step"):
                output = self.trainer.accelerator_backend.validation_step(args)

        # capture any logged information
        self.trainer.logger_connector.cache_logged_metrics()
        # track batch size for weighted average
        is_result_obj = isinstance(output, Result)
        if is_result_obj:
            output.track_batch_size(batch)

        return output

    def evaluation_step_end(self, *args, **kwargs):
        if self.trainer.testing:
            output = self.trainer.call_hook('test_step_end', *args, **kwargs)
        else:
            output = self.trainer.call_hook('validation_step_end', *args,
                                            **kwargs)
        return output

    def evaluation_epoch_end(self):
        # unset dataloder_idx in model
        self.trainer.logger_connector.evaluation_epoch_end(
            self.trainer.testing)

        # call the model epoch end
        deprecated_results = self.__run_eval_epoch_end(self.num_dataloaders)

        # enable returning anything
        for i, r in enumerate(deprecated_results):
            if not isinstance(r, (dict, Result, torch.Tensor)):
                deprecated_results[i] = []

        return deprecated_results

    def log_epoch_metrics_on_evaluation_end(self):
        # get the final loop results
        eval_loop_results = self.trainer.logger_connector.get_evaluate_epoch_results(
        )
        return eval_loop_results

    def __run_eval_epoch_end(self, num_dataloaders):
        model = self.trainer.get_model()

        # with a single dataloader don't pass an array
        outputs = self.outputs
        eval_results = outputs
        if num_dataloaders == 1:
            eval_results = outputs[0]

        user_reduced = False

        if self.trainer.testing:
            if is_overridden('test_epoch_end', model=model):
                model._current_fx_name = 'test_epoch_end'
                eval_results = model.test_epoch_end(eval_results)
                user_reduced = True

        else:
            if is_overridden('validation_epoch_end', model=model):
                model._current_fx_name = 'validation_epoch_end'
                eval_results = model.validation_epoch_end(eval_results)
                user_reduced = True

        # capture logging
        self.trainer.logger_connector.cache_logged_metrics()
        # depre warning
        if eval_results is not None and user_reduced:
            step = 'testing_epoch_end' if self.trainer.testing else 'validation_epoch_end'
            self.warning_cache.warn(
                f'The {step} should not return anything as of 9.1.'
                ' To log, use self.log(...) or self.write(...) directly in the LightningModule'
            )

        if not isinstance(eval_results, list):
            eval_results = [eval_results]

        # track depreceated metrics
        self.trainer.logger_connector.track_metrics_deprecated(eval_results)

        return eval_results

    def __gather_epoch_end_eval_results(self, outputs):
        eval_results = []
        for epoch_output in outputs:
            result = epoch_output[0].__class__.gather(epoch_output)
            if 'checkpoint_on' in result:
                result.checkpoint_on = result.checkpoint_on.mean()
            if 'early_stop_on' in result:
                result.early_stop_on = result.early_stop_on.mean()

            eval_results.append(result)

        # with 1 dataloader don't pass in a list
        if len(eval_results) == 1:
            eval_results = eval_results[0]
        return eval_results

    def __auto_reduce_result_objs(self, outputs):
        # outputs has a list of results per dataloader
        eval_results = []
        for dl_output in outputs:
            result = dl_output[0]
            result = result.__class__.reduce_on_epoch_end(dl_output)
            if 'checkpoint_on' in result:
                result.checkpoint_on = result.checkpoint_on.mean()
            if 'early_stop_on' in result:
                result.early_stop_on = result.early_stop_on.mean()
            eval_results.append(result)

        return eval_results

    def on_predict_epoch_end(self):
        self.trainer._progress_bar_callback.on_test_end(
            self.trainer, self.trainer.get_model())

        results = self._predictions

        def _convert_to_numpy(v):
            return v.cpu().numpy()

        results = apply_to_collection(results, torch.Tensor, _convert_to_numpy)

        return results, None

    def on_evaluation_batch_start(self, batch, batch_idx, dataloader_idx):
        # set dataloader_idx to model and track batch_size
        self.trainer.logger_connector.on_evaluation_batch_start(
            self.trainer.testing, batch, dataloader_idx, self.num_dataloaders)

        if self.trainer.testing:
            self.trainer.call_hook('on_test_batch_start', batch, batch_idx,
                                   dataloader_idx)
        else:
            self.trainer.call_hook('on_validation_batch_start', batch,
                                   batch_idx, dataloader_idx)

    def on_evaluation_batch_end(self, output, batch, batch_idx,
                                dataloader_idx):
        if self.trainer.testing:
            self.trainer.call_hook('on_test_batch_end', output, batch,
                                   batch_idx, dataloader_idx)
        else:
            self.trainer.call_hook('on_validation_batch_end', output, batch,
                                   batch_idx, dataloader_idx)

        # store predicitons if do_write_predictions and track eval loss history
        self.store_predictions(output, batch_idx, dataloader_idx)

    def store_predictions(self, output, batch_idx, dataloader_idx):
        # Add step predictions to prediction collection to write later
        if output is not None:
            do_write_predictions = isinstance(output,
                                              Result) and self.trainer.testing
            if do_write_predictions:
                self.predictions.add(output.pop('predictions', None))

        # track debug metrics
        self.trainer.dev_debugger.track_eval_loss_history(
            batch_idx, dataloader_idx, output)

    def on_evaluation_epoch_end(self, *args, **kwargs):
        # call the callback hook
        if self.trainer.testing:
            self.trainer.call_hook('on_test_epoch_end', *args, **kwargs)
        else:
            self.trainer.call_hook('on_validation_epoch_end', *args, **kwargs)

    def log_evaluation_step_metrics(self, output, batch_idx):
        if self.trainer.running_sanity_check:
            return

        step_log_metrics = {}
        step_pbar_metrics = {}

        self.__log_result_step_metrics(step_log_metrics, step_pbar_metrics,
                                       batch_idx)

    def __log_result_step_metrics(self, step_log_metrics, step_pbar_metrics,
                                  batch_idx):
        cached_results = self.trainer.logger_connector.cached_results
        cached_batch_pbar_metrics, cached_batch_log_metrics = cached_results.update_logger_connector(
        )

        step_log_metrics.update(cached_batch_log_metrics)
        step_pbar_metrics.update(cached_batch_pbar_metrics)

        if len(step_log_metrics) > 0:
            # make the metrics appear as a different line in the same graph
            metrics_by_epoch = {}
            for k, v in step_log_metrics.items():
                metrics_by_epoch[f'{k}/epoch_{self.trainer.current_epoch}'] = v

            self.trainer.logger_connector.log_metrics(metrics_by_epoch, {},
                                                      step=batch_idx)

        if len(step_pbar_metrics) > 0:
            self.trainer.logger_connector.add_progress_bar_metrics(
                step_pbar_metrics)