Example #1
0
        def wrapper(*args, **kwargs) -> Tuple[Any, Stats]:
            from pytorch_memlab import LineProfiler

            model = args[0]
            if not isinstance(model, torch.nn.Module):
                raise AttributeError(
                    'First argument for profiling needs to be torch.nn.Module')

            # Init `pytorch_memlab` for analyzing the model forward pass:
            line_profiler = LineProfiler()
            line_profiler.enable()
            line_profiler.add_function(args[0].forward)

            start = torch.cuda.Event(enable_timing=True)
            end = torch.cuda.Event(enable_timing=True)
            start.record()

            out = func(*args, **kwargs)

            end.record()
            torch.cuda.synchronize()
            time = start.elapsed_time(end) / 1000

            # Get the global memory statistics collected by `pytorch_memlab`:
            memlab = read_from_memlab(line_profiler)
            max_allocated_cuda, max_reserved_cuda, max_active_cuda = memlab
            line_profiler.disable()

            # Get additional information from `nvidia-smi`:
            free_cuda, used_cuda = get_gpu_memory_from_nvidia_smi()

            stats = Stats(time, max_allocated_cuda, max_reserved_cuda,
                          max_active_cuda, free_cuda, used_cuda)

            return out, stats
def test_line_report():
    def work():
        # comment
        linear = torch.nn.Linear(100, 100).cuda()
        linear_2 = torch.nn.Linear(100, 100).cuda()
        linear_3 = torch.nn.Linear(100, 100).cuda()

    def work_3():
        lstm = torch.nn.LSTM(1000, 1000).cuda()

    def work_2():
        # comment
        linear = torch.nn.Linear(100, 100).cuda()
        linear_2 = torch.nn.Linear(100, 100).cuda()
        linear_3 = torch.nn.Linear(100, 100).cuda()
        work_3()

    line_profiler = LineProfiler(work, work_2)
    line_profiler.enable()

    work()
    work_2()

    line_profiler.disable()
    line_profiler.print_stats()
Example #3
0
def mem_benchmark():
    from pytorch_memlab import LineProfiler 
    n = int(8e6)
    prob = test.random_problem(S=n, T=n)

    with LineProfiler(solve) as prof:
        solve(prob)
    
    prof.print_stats()
Example #4
0
    def forward(self, x, r_ij, neighbors, pairwise_mask, f_ij=None):
        """Compute convolution block.

        Args:
            x (torch.Tensor): input representation/embedding of atomic environments
                with (N_b, N_a, n_in) shape.
            r_ij (torch.Tensor): interatomic distances of (N_b, N_a, N_nbh) shape.
            neighbors (torch.Tensor): indices of neighbors of (N_b, N_a, N_nbh) shape.
            pairwise_mask (torch.Tensor): mask to filter out non-existing neighbors
                introduced via padding.
            f_ij (torch.Tensor, optional): expanded interatomic distances in a basis.
                If None, r_ij.unsqueeze(-1) is used.

        Returns:
            torch.Tensor: block output with (N_b, N_a, n_out) shape.

        """
        if f_ij is None:
            f_ij = r_ij.unsqueeze(-1)

        # pass expanded interactomic distances through filter block
        W = self.filter_network(f_ij)
        # apply cutoff
        if self.cutoff_network is not None:
            C = self.cutoff_network(r_ij)
            W = W * C.unsqueeze(-1)

        def inner(x, neighbors, pairwise_mask):
            # pass initial embeddings through Dense layer
            y = self.in2f(x)
            print(x.shape, y.shape)
            # reshape y for element-wise multiplication by W
            nbh_size = neighbors.size()
            nbh = neighbors.view(-1, nbh_size[1] * nbh_size[2], 1)
            nbh = nbh.expand(-1, -1, y.size(2))
            print(neighbors.shape, nbh.shape)
            y = torch.gather(y, 1, nbh)
            y = y.view(nbh_size[0], nbh_size[1], nbh_size[2], -1)
            print(y.shape)
            print('')

            # element-wise multiplication, aggregating and Dense layer
            y = y * W
            y = self.agg(y, pairwise_mask)
            y = self.f2out(y)

            return y

        with LineProfiler(inner) as prof:
            y = inner(x, neighbors, pairwise_mask)

        prof.print_stats()

        return y
def test_display():
    def work():
        # comment
        linear = torch.nn.Linear(100, 100).cuda()
        linear_2 = torch.nn.Linear(100, 100).cuda()
        linear_3 = torch.nn.Linear(100, 100).cuda()

    def work_3():
        lstm = torch.nn.LSTM(1000, 1000).cuda()

    def work_2():
        # comment
        linear = torch.nn.Linear(100, 100).cuda()
        linear_2 = torch.nn.Linear(100, 100).cuda()
        linear_3 = torch.nn.Linear(100, 100).cuda()
        work_3()

    with LineProfiler(work, work_2) as prof:
        work()
        work_2()

    return prof.display()
Example #6
0
# Do not change; required for benchmarking

import torch_geometric_benchmark.torchprof_local as torchprof  # noqa
from pytorch_memlab import LineProfiler  # noqa
from torch_geometric_benchmark.utils import count_parameters  # noqa
from torch_geometric_benchmark.utils import get_gpu_memory_nvdia  # noqa
from torch_geometric_benchmark.utils import get_memory_status  # noqa
from torch_geometric_benchmark.utils import get_model_size  # noqa

global_line_profiler = LineProfiler()
global_line_profiler.enable()
                        help='Load a model to continue training')
    parser.add_argument('--save_every',
                        default=None,
                        type=int,
                        help='How often to save during training')

    args = vars(parser.parse_args())

    file_folder_path = os.path.dirname(os.path.abspath(__file__))
    project_folder_path = os.path.join(file_folder_path, "..")

    input_folder = os.path.join(project_folder_path, "TrainingData")
    output_folder = os.path.join(project_folder_path, "Output")
    save_folder = os.path.join(project_folder_path, "SavedModels")

    prof = LineProfiler()
    prof.enable()

    if (args['load_from'] is None):
        opt = Options.get_default()
        for k in args.keys():
            if args[k] is not None:
                opt[k] = args[k]
        dataset = LocalImplicitDataset(opt)
        model = HierarchicalACORN(opt)

    trainer = Trainer(opt)
    trainer.train(model, dataset)

    print(prof.display())
    prof.disable()
Example #8
0
           """

from pathlib import Path

import torch
from pytorch_memlab import LineProfiler

from apppath import ensure_existence

if __name__ == "__main__":

    def inner() -> None:
        """
        :rtype: None
        """
        torch.nn.Linear(100, 100).cuda()

    def outer() -> None:
        """
        :rtype: None
        """
        linear = torch.nn.Linear(100, 100).cuda()
        linear2 = torch.nn.Linear(100, 100).cuda()
        inner()

    with LineProfiler(outer, inner) as prof:
        outer()

    with open(ensure_existence(Path("exclude")) / "test.html", "w") as f:
        f.write(prof.display()._repr_html_())