Example #1
0
 def __init__(self):
     super(Cifar10ConvNet, self).__init__()
     self.conv1 = pytk.Conv2d(3, 32, 3, padding=1)
     self.conv2 = pytk.Conv2d(32, 64, 3, padding=1)
     self.conv3 = pytk.Conv2d(64, 128, 3, padding=1)
     self.fc1 = pytk.Linear(4 * 4 * 128, 512)
     self.out = pytk.Linear(512, NUM_CLASSES)
Example #2
0
    def __init__(self):
        super(MNISTConvNet2, self).__init__()
        self.convNet = nn.Sequential(
            pytk.Conv2d(1, 128, kernel_size=3),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Dropout(p=0.20),

            pytk.Conv2d(128, 64, kernel_size=3),
            nn.ReLU(),
            nn.MaxPool2d(2),
            nn.Dropout(p=0.10),

            nn.Flatten(),

            pytk.Linear(7 * 7 * 64, 512),
            nn.ReLU(),
            nn.Dropout(p=0.20),

            pytk.Linear(512, NUM_CLASSES)
        )
Example #3
0
    def __init__(self, lr):
        super(MNISTModel, self).__init__()
        self.convNet = nn.Sequential(pytk.Conv2d(1, 128, kernel_size=3),
                                     nn.ReLU(), nn.MaxPool2d(2),
                                     nn.Dropout(p=0.20),
                                     pytk.Conv2d(128, 64, kernel_size=3),
                                     nn.ReLU(), nn.MaxPool2d(2),
                                     nn.Dropout(p=0.10), nn.Flatten(),
                                     pytk.Linear(7 * 7 * 64, 512), nn.ReLU(),
                                     nn.Dropout(p=0.20),
                                     pytk.Linear(512, NUM_CLASSES))
        self.lr = lr
        self.loss_fn = nn.CrossEntropyLoss()
        self.train_acc = tm.Accuracy()
        self.val_acc = tm.Accuracy()

        self.train_batch_losses = []
        self.val_batch_losses = []
        self.train_batch_accs = []
        self.val_batch_accs = []

        self.history = {"loss": [], "acc": [], "val_loss": [], "val_acc": []}
        self.log_file = open(os.path.join(os.getcwd(), 'mnist_log.txt'), 'w')
Example #4
0
 def __init__(self):
     super(MNISTConvNet, self).__init__()
     self.conv1 = pytk.Conv2d(1, 128, kernel_size=3)
     self.conv2 = pytk.Conv2d(128, 64, kernel_size=3)
     self.fc1 = pytk.Linear(7 * 7 * 64, 512)
     self.out = pytk.Linear(512, NUM_CLASSES)