def test_full_tokenizer_no_lower(self):
        tokenizer = TransfoXLTokenizer(lower_case=False)

        self.assertListEqual(
            tokenizer.tokenize(" \tHeLLo ! how  \n Are yoU ?  "),
            ["HeLLo", "!", "how", "Are", "yoU", "?"],
        )
    def test_full_tokenizer_lower(self):
        tokenizer = TransfoXLTokenizer(lower_case=True)

        self.assertListEqual(
            tokenizer.tokenize(" \tHeLLo ! how  \n Are yoU ?  "),
            ["hello", "!", "how", "are", "you", "?"],
        )
Example #3
0
    def test_full_tokenizer(self):
        tokenizer = TransfoXLTokenizer(vocab_file=self.vocab_file,
                                       lower_case=True)

        tokens = tokenizer.tokenize(u"<unk> UNwanted , running")
        self.assertListEqual(tokens, ["<unk>", "unwanted", ",", "running"])

        self.assertListEqual(tokenizer.convert_tokens_to_ids(tokens),
                             [0, 4, 8, 7])
Example #4
0
    def test_full_tokenizer(self):
        vocab_tokens = [
            "<unk>", "[CLS]", "[SEP]", "want", "unwanted", "wa", "un",
            "running", ",", "low", "l",
        ]
        with TemporaryDirectory() as tmpdirname:
            vocab_file = os.path.join(tmpdirname, VOCAB_FILES_NAMES['vocab_file'])
            with open(vocab_file, "w", encoding='utf-8') as vocab_writer:
                vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))

            input_text = u"<unk> UNwanted , running"
            output_text = u"<unk> unwanted, running"

            create_and_check_tokenizer_commons(self, input_text, output_text, TransfoXLTokenizer, tmpdirname, lower_case=True)

            tokenizer = TransfoXLTokenizer(vocab_file=vocab_file, lower_case=True)

            tokens = tokenizer.tokenize(u"<unk> UNwanted , running")
            self.assertListEqual(tokens, ["<unk>", "unwanted", ",", "running"])

            self.assertListEqual(
                tokenizer.convert_tokens_to_ids(tokens), [0, 4, 8, 7])
Example #5
0
def transformerXLTokenizer(*args, **kwargs):
    """
    Instantiate a Transformer-XL tokenizer adapted from Vocab class in https://github.com/kimiyoung/transformer-xl

    Args:
    pretrained_model_name_or_path: Path to pretrained model archive
                                   or one of pre-trained vocab configs below.
                                       * transfo-xl-wt103

    Example:
        >>> import torch
        >>> tokenizer = torch.hub.load('huggingface/pytorch-transformers', 'transformerXLTokenizer', 'transfo-xl-wt103')
        
        >>> text = "Who was Jim Henson ?"
        >>> tokenized_text = tokenizer.tokenize(tokenized_text)
        >>> indexed_tokens = tokenizer.convert_tokens_to_ids(tokenized_text)
    """
    tokenizer = TransfoXLTokenizer.from_pretrained(*args, **kwargs)
    return tokenizer
Example #6
0
 def get_tokenizer(self, **kwargs):
     kwargs['lower_case'] = True
     return TransfoXLTokenizer.from_pretrained(self.tmpdirname, **kwargs)
 def get_tokenizer(self):
     return TransfoXLTokenizer.from_pretrained(self.tmpdirname,
                                               lower_case=True)