Example #1
0
    def test_false_keep_batches(self):
        model_one_input = SimpleModuleOneInput()

        device = torch.device('cpu')
        last_activation = nn.ReLU()
        system = System(model_one_input,
                        device=device,
                        last_activation=last_activation)

        data_loader = [{
            'input': (torch.ones((1, 2)) * 2)
        }, {
            'input': (torch.ones((1, 2)) * -2)
        }]

        pure_predictions = system.pure_predict(data_loader=data_loader,
                                               keep_batches=False,
                                               verbose=False)

        self.assertEqual(len(pure_predictions['output_list']), 2)
        self.assertFalse('batch_list' in pure_predictions)
        self.assertAlmostEqual(pure_predictions['output_list'][0].item(), 8.,
                               5)
        self.assertAlmostEqual(pure_predictions['output_list'][1].item(), -8.,
                               5)
Example #2
0
    def test_batch_input_key(self):
        model_one_input = SimpleModuleOneInput()

        device = torch.device('cpu')
        last_activation = nn.ReLU()
        system = System(model_one_input,
                        device=device,
                        last_activation=last_activation)

        data_loader = [{
            'input_test': (torch.ones((1, 2)) * 2)
        }, {
            'input_test': (torch.ones((1, 2)) * -2)
        }]

        pure_predictions = system.pure_predict(data_loader=data_loader,
                                               batch_input_key='input_test',
                                               verbose=False)

        self.assertEqual(len(pure_predictions['batch_list']), 2)
        self.assertEqual(len(pure_predictions['batch_list']),
                         len(pure_predictions['output_list']))
        np.testing.assert_almost_equal(
            pure_predictions['batch_list'][0]['input_test'].tolist(),
            data_loader[0]['input_test'].tolist(), 5)
        np.testing.assert_almost_equal(
            pure_predictions['batch_list'][1]['input_test'].tolist(),
            data_loader[1]['input_test'].tolist(), 5)

        self.assertAlmostEqual(pure_predictions['output_list'][0].item(), 8.,
                               5)
        self.assertAlmostEqual(pure_predictions['output_list'][1].item(), -8.,
                               5)
Example #3
0
    def test_to(self):
        if not torch.cuda.is_available():
            return

        model_two_inputs = SimpleModuleTwoInputs()

        device = torch.device('cpu')
        system = System(model_two_inputs, device=device)
        device_to_move = torch.device('cuda')
        system.to(device_to_move)

        self.assertEqual(device_to_move, system.device)
Example #4
0
    def test_predict_batch_two_inputs(self):
        model_two_inputs = SimpleModuleTwoInputs()

        device = torch.device('cpu')
        system = System(model_two_inputs, device=device)

        batch = [torch.ones((1, 2)) * 2, torch.ones((1, 2)) * 2]
        out = system.predict_batch(batch)
        self.assertAlmostEqual(out.item(), 16)

        batch = (torch.ones((1, 2)) * 2, torch.ones((1, 2)) * 2)
        out = system.predict_batch(batch)
        self.assertAlmostEqual(out.item(), 16)
Example #5
0
    def test_predict_batch_one_input(self):
        model_one_input = SimpleModuleOneInput()

        device = torch.device('cpu')
        system = System(model_one_input, device=device)

        batch = [torch.ones((1, 2)) * 2]
        out = system.predict_batch(batch)
        self.assertAlmostEqual(out.item(), 8)

        batch = (torch.ones((1, 2)) * 2)
        out = system.predict_batch(batch)
        self.assertAlmostEqual(out.item(), 8)

        batch = torch.ones((1, 2)) * 2
        out = system.predict_batch(batch)
        self.assertAlmostEqual(out.item(), 8)
Example #6
0
    def test_creation(self):
        model = MagicMock()
        model.to = MagicMock()

        device = torch.device('cpu')
        system = System(model, device=device)

        self.assertEqual(system.device, device)
        model.to.assert_called_once_with(device)
Example #7
0
    def test_defaults(self):
        model_one_input = SimpleModuleOneInput()

        device = torch.device('cpu')
        last_activation = nn.ReLU()
        system = System(model_one_input,
                        device=device,
                        last_activation=last_activation)

        data_loader = [{
            'input': (torch.ones((1, 2)) * 2)
        }, {
            'input': (torch.ones((1, 2)) * -2)
        }]

        out = system.predict(data_loader=data_loader, verbose=False)

        np.testing.assert_almost_equal(out['outputs'], [8, 0], 5)
Example #8
0
    def setUp(self):
        self.model_one_input = SimpleModuleOneInput()

        device = torch.device('cpu')
        last_activation = nn.ReLU()
        self.system = System(self.model_one_input,
                             device=device,
                             last_activation=last_activation)

        evaluator1 = MagicMock()
        evaluator1.reset = MagicMock()
        evaluator1.step = MagicMock()
        evaluator1.calculate = MagicMock(return_value='evaluator1_res')

        evaluator2 = MagicMock()
        evaluator2.reset = MagicMock()
        evaluator2.step = MagicMock()
        evaluator2.calculate = MagicMock(return_value='evaluator2_res')

        self.evaluators = {'evaluator1': evaluator1, 'evaluator2': evaluator2}
Example #9
0
    def test_load(self):
        with patch('pytorch_wrapper.system.torch.load') as torch_load:
            torch_load.return_value = {
                'model': self.model,
                'last_activation': self.last_activation
            }
            loaded_system = System.load(self.path)

            torch_load.assert_called_once_with(
                self.path, map_location=torch.device('cpu'))
            self.assertEqual(loaded_system.model, self.model)
            self.assertEqual(loaded_system.last_activation,
                             self.last_activation)
Example #10
0
    def test_batch_str_id_key(self):
        model_one_input = SimpleModuleOneInput()

        device = torch.device('cpu')
        last_activation = nn.ReLU()
        system = System(model_one_input,
                        device=device,
                        last_activation=last_activation)

        data_loader = [{
            'input': (torch.ones((1, 2)) * 2),
            'id': ['id_0']
        }, {
            'input': (torch.ones((1, 2)) * -2),
            'id': ['id_1']
        }]

        out = system.predict(data_loader=data_loader,
                             batch_id_key='id',
                             verbose=False)

        np.testing.assert_almost_equal(out['outputs'], [8, 0], 5)
        self.assertListEqual(out['id'], ['id_0', 'id_1'])
Example #11
0
class SystemSaveLoadTestCase(unittest.TestCase):
    def setUp(self):
        self.path = 'test.model'
        self.last_activation = nn.ReLU
        self.model = SimpleModuleOneInput()
        self.system = System(self.model, last_activation=self.last_activation)

    def test_save(self):
        with patch('pytorch_wrapper.system.torch.save') as torch_save:
            self.system.save(self.path)

            torch_save.assert_called_once_with(
                {
                    'model': self.model,
                    'last_activation': self.last_activation
                }, self.path)

    def test_load(self):
        with patch('pytorch_wrapper.system.torch.load') as torch_load:
            torch_load.return_value = {
                'model': self.model,
                'last_activation': self.last_activation
            }
            loaded_system = System.load(self.path)

            torch_load.assert_called_once_with(
                self.path, map_location=torch.device('cpu'))
            self.assertEqual(loaded_system.model, self.model)
            self.assertEqual(loaded_system.last_activation,
                             self.last_activation)

    def test_save_model_state(self):
        with patch('pytorch_wrapper.system.torch.save') as torch_save:
            self.system.save_model_state(self.path)
            torch_save.assert_called_once()

    def test_load_model_state(self):
        with patch('pytorch_wrapper.system.torch.load') as torch_load:
            torch_load.return_value = self.model.state_dict()
            self.system.load_model_state(self.path)

            torch_load.assert_called_once_with(
                self.path, map_location=torch.device('cpu'))
Example #12
0
    def setUp(self):
        self.callback = MagicMock()
        self.callback.on_training_star = MagicMock()
        self.callback.on_training_end = MagicMock()
        self.callback.on_evaluation_start = MagicMock()
        self.callback.on_evaluation_end = MagicMock()
        self.callback.on_epoch_start = MagicMock()
        self.callback.on_epoch_end = MagicMock()
        self.callback.on_batch_start = MagicMock()
        self.callback.on_batch_end = MagicMock()
        self.callback.post_predict = MagicMock()
        self.callback.post_loss_calculation = MagicMock()
        self.callback.post_backward_calculation = MagicMock()
        self.callback.pre_optimization_step = MagicMock()

        self.model_one_input = SimpleModuleOneInput()

        device = torch.device('cpu')
        last_activation = nn.ReLU()
        self.system = System(self.model_one_input,
                             device=device,
                             last_activation=last_activation)

        self.data_loader_1 = [{
            'input': (torch.ones((1, 2)) * 2)
        }, {
            'input': (torch.ones((1, 2)) * -2)
        }]

        self.data_loader_2 = [{
            'input': (torch.ones((1, 2)) * 3)
        }, {
            'input': (torch.ones((1, 2)) * -3)
        }]

        self.data_loader_3 = [{
            'input': (torch.ones((1, 2)) * 4)
        }, {
            'input': (torch.ones((1, 2)) * -4)
        }]

        evaluator1 = MagicMock()
        evaluator1.reset = MagicMock()
        evaluator1.step = MagicMock()
        evaluator1.calculate = MagicMock(return_value='evaluator1_res')

        evaluator2 = MagicMock()
        evaluator2.reset = MagicMock()
        evaluator2.step = MagicMock()
        evaluator2.calculate = MagicMock(return_value='evaluator2_res')

        self.loss_wrapper = MagicMock()
        self.loss_wrapper.calculate_loss = MagicMock()
        self.calculate_loss_ret_value = MagicMock()
        self.calculate_loss_ret_value.backward = MagicMock()
        self.calculate_loss_ret_value.item = MagicMock()
        self.calculate_loss_ret_value.item.return_value = 1
        self.loss_wrapper.calculate_loss.return_value = self.calculate_loss_ret_value
        self.optimizer = MagicMock()
        self.optimizer.zero_grad = MagicMock()
        self.optimizer.step = MagicMock()
        self.train_data_loader = self.data_loader_1
        self.evaluation_data_loaders = OrderedDict([('d1', self.data_loader_2),
                                                    ('d2', self.data_loader_3)
                                                    ])
        self.batch_input_key = 'input'
        self.evaluators = OrderedDict([('e1', evaluator1), ('e2', evaluator2)])
        self.callbacks = [self.callback]
        self.gradient_accumulation_steps = 1
        self.verbose = False

        self.trainer = system_module._Trainer(
            self.system, self.loss_wrapper, self.optimizer,
            self.train_data_loader, self.evaluation_data_loaders,
            self.batch_input_key, self.evaluators, self.callbacks,
            self.gradient_accumulation_steps, self.verbose)
Example #13
0
class SystemEvaluateTestCase(unittest.TestCase):
    def setUp(self):
        self.model_one_input = SimpleModuleOneInput()

        device = torch.device('cpu')
        last_activation = nn.ReLU()
        self.system = System(self.model_one_input,
                             device=device,
                             last_activation=last_activation)

        evaluator1 = MagicMock()
        evaluator1.reset = MagicMock()
        evaluator1.step = MagicMock()
        evaluator1.calculate = MagicMock(return_value='evaluator1_res')

        evaluator2 = MagicMock()
        evaluator2.reset = MagicMock()
        evaluator2.step = MagicMock()
        evaluator2.calculate = MagicMock(return_value='evaluator2_res')

        self.evaluators = {'evaluator1': evaluator1, 'evaluator2': evaluator2}

    def test_evaluate_defaults(self):
        data_loader = [{
            'input': (torch.ones((1, 2)) * 2)
        }, {
            'input': (torch.ones((1, 2)) * -2)
        }]

        results = self.system.evaluate(data_loader,
                                       self.evaluators,
                                       verbose=False)

        self.assertFalse(self.model_one_input.training)

        self.evaluators['evaluator1'].reset.assert_called_once()
        self.assertEqual(self.evaluators['evaluator1'].step.call_count, 2)
        self.evaluators['evaluator1'].calculate.assert_called_once()

        self.evaluators['evaluator2'].reset.assert_called_once()
        self.assertEqual(self.evaluators['evaluator2'].step.call_count, 2)
        self.evaluators['evaluator2'].calculate.assert_called_once()

        self.assertEqual(results['evaluator1'], 'evaluator1_res')
        self.assertEqual(results['evaluator2'], 'evaluator2_res')

    def test_evaluate_batch_input_key(self):
        data_loader = [{
            'input2': (torch.ones((1, 2)) * 2)
        }, {
            'input2': (torch.ones((1, 2)) * -2)
        }]

        results = self.system.evaluate(data_loader,
                                       self.evaluators,
                                       batch_input_key='input2',
                                       verbose=False)

        self.assertFalse(self.model_one_input.training)

        self.evaluators['evaluator1'].reset.assert_called_once()
        self.assertEqual(self.evaluators['evaluator1'].step.call_count, 2)
        self.evaluators['evaluator1'].calculate.assert_called_once()

        self.evaluators['evaluator2'].reset.assert_called_once()
        self.assertEqual(self.evaluators['evaluator2'].step.call_count, 2)
        self.evaluators['evaluator2'].calculate.assert_called_once()

        self.assertEqual(results['evaluator1'], 'evaluator1_res')
        self.assertEqual(results['evaluator2'], 'evaluator2_res')
Example #14
0
 def setUp(self):
     self.path = 'test.model'
     self.last_activation = nn.ReLU
     self.model = SimpleModuleOneInput()
     self.system = System(self.model, last_activation=self.last_activation)