def initialize(self, image, state, *args, **kwargs): # Initialize some stuff self.frame_num = 1 if not hasattr(self.params, 'device'): self.params.device = 'cuda' if self.params.use_gpu else 'cpu' # Initialize features self.initialize_features() # Chack if image is color self.params.features.set_is_color(image.shape[2] == 3) # Get feature specific params self.fparams = self.params.features.get_fparams('feature_params') # Get position and size self.pos = torch.Tensor([state[1] + (state[3] - 1)/2, state[0] + (state[2] - 1)/2]) self.target_sz = torch.Tensor([state[3], state[2]]) # Set search area self.target_scale = 1.0 search_area = torch.prod(self.target_sz * self.params.search_area_scale).item() if search_area > self.params.max_image_sample_size: self.target_scale = math.sqrt(search_area / self.params.max_image_sample_size) elif search_area < self.params.min_image_sample_size: self.target_scale = math.sqrt(search_area / self.params.min_image_sample_size) # Target size in base scale self.base_target_sz = self.target_sz / self.target_scale # Use odd square search area and set sizes feat_max_stride = max(self.params.features.stride()) self.img_sample_sz = torch.round(torch.sqrt(torch.prod(self.base_target_sz * self.params.search_area_scale))) * torch.ones(2) self.img_sample_sz += feat_max_stride - self.img_sample_sz % (2 * feat_max_stride) # Set other sizes (corresponds to ECO code) self.img_support_sz = self.img_sample_sz self.feature_sz = self.params.features.size(self.img_sample_sz) self.filter_sz = self.feature_sz + (self.feature_sz + 1) % 2 self.output_sz = self.params.score_upsample_factor * self.img_support_sz # Interpolated size of the output self.compressed_dim = self.fparams.attribute('compressed_dim') # Number of filters self.num_filters = len(self.filter_sz) # Get window function self.window = TensorList([dcf.hann2d(sz).to(self.params.device) for sz in self.feature_sz]) # Get interpolation function self.interp_fs = TensorList([dcf.get_interp_fourier(sz, self.params.interpolation_method, self.params.interpolation_bicubic_a, self.params.interpolation_centering, self.params.interpolation_windowing, self.params.device) for sz in self.filter_sz]) # Get regularization filter self.reg_filter = TensorList([dcf.get_reg_filter(self.img_support_sz, self.base_target_sz, fparams).to(self.params.device) for fparams in self.fparams]) self.reg_energy = self.reg_filter.view(-1) @ self.reg_filter.view(-1) # Get label function output_sigma_factor = self.fparams.attribute('output_sigma_factor') sigma = (self.filter_sz / self.img_support_sz) * torch.sqrt(self.base_target_sz.prod()) * output_sigma_factor self.yf = TensorList([dcf.label_function(sz, sig).to(self.params.device) for sz, sig in zip(self.filter_sz, sigma)]) # Optimization options self.params.precond_learning_rate = self.fparams.attribute('learning_rate') if self.params.CG_forgetting_rate is None or max(self.params.precond_learning_rate) >= 1: self.params.direction_forget_factor = 0 else: self.params.direction_forget_factor = (1 - max(self.params.precond_learning_rate))**self.params.CG_forgetting_rate # Convert image im = numpy_to_torch(image) # Setup bounds self.image_sz = torch.Tensor([im.shape[2], im.shape[3]]) self.min_scale_factor = torch.max(10 / self.base_target_sz) self.max_scale_factor = torch.min(self.image_sz / self.base_target_sz) # Extract and transform sample x = self.generate_init_samples(im) # Initialize projection matrix x_mat = TensorList([e.permute(1,0,2,3).reshape(e.shape[1], -1).clone() for e in x]) x_mat -= x_mat.mean(dim=1, keepdim=True) cov_x = x_mat @ x_mat.t() self.projection_matrix = TensorList([torch.svd(C)[0][:,:cdim].clone() for C, cdim in zip(cov_x, self.compressed_dim)]) # Transform to get the training sample train_xf = self.preprocess_sample(x) # Shift the samples back if 'shift' in self.params.augmentation: for xf in train_xf: if xf.shape[0] == 1: continue for i, shift in enumerate(self.params.augmentation['shift']): shift_samp = 2 * math.pi * torch.Tensor(shift) / self.img_support_sz xf[1+i:2+i,...] = fourier.shift_fs(xf[1+i:2+i,...], shift=shift_samp) # Shift sample shift_samp = 2*math.pi * (self.pos - self.pos.round()) / (self.target_scale * self.img_support_sz) train_xf = fourier.shift_fs(train_xf, shift=shift_samp) # Initialize first-frame training samples num_init_samples = train_xf.size(0) self.init_sample_weights = TensorList([xf.new_ones(1) / xf.shape[0] for xf in train_xf]) self.init_training_samples = train_xf.permute(2, 3, 0, 1, 4) # Sample counters and weights self.num_stored_samples = num_init_samples self.previous_replace_ind = [None]*len(self.num_stored_samples) self.sample_weights = TensorList([xf.new_zeros(self.params.sample_memory_size) for xf in train_xf]) for sw, init_sw, num in zip(self.sample_weights, self.init_sample_weights, num_init_samples): sw[:num] = init_sw # Initialize memory self.training_samples = TensorList( [xf.new_zeros(xf.shape[2], xf.shape[3], self.params.sample_memory_size, cdim, 2) for xf, cdim in zip(train_xf, self.compressed_dim)]) # Initialize filter self.filter = TensorList( [xf.new_zeros(1, cdim, xf.shape[2], xf.shape[3], 2) for xf, cdim in zip(train_xf, self.compressed_dim)]) # Do joint optimization self.joint_problem = FactorizedConvProblem(self.init_training_samples, self.yf, self.reg_filter, self.projection_matrix, self.params, self.init_sample_weights) joint_var = self.filter.concat(self.projection_matrix) self.joint_optimizer = GaussNewtonCG(self.joint_problem, joint_var, debug=(self.params.debug>=3)) if self.params.update_projection_matrix: self.joint_optimizer.run(self.params.init_CG_iter // self.params.init_GN_iter, self.params.init_GN_iter) # Re-project samples with the new projection matrix compressed_samples = complex.mtimes(self.init_training_samples, self.projection_matrix) for train_samp, init_samp in zip(self.training_samples, compressed_samples): train_samp[:,:,:init_samp.shape[2],:,:] = init_samp # Initialize optimizer self.filter_optimizer = FilterOptim(self.params, self.reg_energy) self.filter_optimizer.register(self.filter, self.training_samples, self.yf, self.sample_weights, self.reg_filter) self.filter_optimizer.sample_energy = self.joint_problem.sample_energy self.filter_optimizer.residuals = self.joint_optimizer.residuals.clone() if not self.params.update_projection_matrix: self.filter_optimizer.run(self.params.init_CG_iter) # Post optimization self.filter_optimizer.run(self.params.post_init_CG_iter) self.symmetrize_filter()
def initialize(self, image, info: dict) -> dict: initSeed = 1 torch.manual_seed(initSeed) torch.cuda.manual_seed(initSeed) torch.cuda.manual_seed_all(initSeed) np.random.seed(initSeed) torch.backends.cudnn.benchmark = False torch.backends.cudnn.deterministic = True os.environ['PYTHONHASHSEED'] = str(initSeed) state = info['init_bbox'] # Initialize some stuff self.frame_num = 1 if not hasattr(self.params, 'device'): self.params.device = 'cuda' if self.params.use_gpu else 'cpu' # Initialize features self.initialize_features() # metricnet self.metric_model = model_load(self.params.metric_model_path) # warmup start with torch.no_grad(): tmp = np.random.rand(5, 3, 107, 107) tmp = torch.Tensor(tmp) tmp = (Variable(tmp)).type(torch.FloatTensor).cuda() tmp = self.metric_model(tmp) # warmup end self.target_metric_feature = get_target_feature( self.metric_model, np.array(state), np.array(image)) pos_generator = SampleGenerator( 'gaussian', np.array([image.shape[1], image.shape[0]]), 0.1, 1.3) gt_pos_examples = pos_generator( np.array(state).astype(np.int), 20, [0.7, 1]) gt_iou = 0.7 while gt_pos_examples.shape[0] == 0: gt_iou = gt_iou - 0.1 gt_pos_examples = pos_generator( np.array(state).astype(np.int), 20, [gt_iou, 1]) # print('gt-iouļ¼', gt_iou) # self.gt_pos_features = get_anchor_feature(self.metric_model, np.array(image), gt_pos_examples).cpu().detach().numpy() with torch.no_grad(): gt_pos_features0 = get_anchor_feature(self.metric_model, np.array(image), gt_pos_examples) gt_pos_features = gt_pos_features0.cpu().detach().numpy() target_metric_feature = self.target_metric_feature.repeat( gt_pos_features.shape[0], 1) pos_all = torch.norm(gt_pos_features0 - target_metric_feature, 2, dim=1).view(-1) self.similar = pos_all.mean() * self.params.sim_rate print('similarThresh', self.similar) self.target_features_all = [] self.target_features_all.append(self.target_metric_feature) self.clf = lof_fit(gt_pos_features, k=5) # Chack if image is color self.params.features.set_is_color(image.shape[2] == 3) # Get feature specific params self.fparams = self.params.features.get_fparams('feature_params') # Get position and size self.pos = torch.Tensor( [state[1] + (state[3] - 1) / 2, state[0] + (state[2] - 1) / 2]) self.target_sz = torch.Tensor([state[3], state[2]]) # Set search area self.target_scale = 1.0 search_area = torch.prod(self.target_sz * self.params.search_area_scale).item() if search_area > self.params.max_image_sample_size: self.target_scale = math.sqrt(search_area / self.params.max_image_sample_size) elif search_area < self.params.min_image_sample_size: self.target_scale = math.sqrt(search_area / self.params.min_image_sample_size) # Target size in base scale self.base_target_sz = self.target_sz / self.target_scale # Use odd square search area and set sizes feat_max_stride = max(self.params.features.stride()) self.img_sample_sz = torch.round( torch.sqrt( torch.prod(self.base_target_sz * self.params.search_area_scale))) * torch.ones(2) self.img_sample_sz += feat_max_stride - self.img_sample_sz % ( 2 * feat_max_stride) # Set other sizes (corresponds to ECO code) self.img_support_sz = self.img_sample_sz self.feature_sz = self.params.features.size(self.img_sample_sz) self.filter_sz = self.feature_sz + (self.feature_sz + 1) % 2 self.output_sz = self.params.score_upsample_factor * self.img_support_sz # Interpolated size of the output self.compressed_dim = self.fparams.attribute('compressed_dim') # Number of filters self.num_filters = len(self.filter_sz) # Get window function self.window = TensorList( [dcf.hann2d(sz).to(self.params.device) for sz in self.feature_sz]) # Get interpolation function self.interp_fs = TensorList([ dcf.get_interp_fourier(sz, self.params.interpolation_method, self.params.interpolation_bicubic_a, self.params.interpolation_centering, self.params.interpolation_windowing, self.params.device) for sz in self.filter_sz ]) # Get regularization filter self.reg_filter = TensorList([ dcf.get_reg_filter(self.img_support_sz, self.base_target_sz, fparams).to(self.params.device) for fparams in self.fparams ]) self.reg_energy = self.reg_filter.view(-1) @ self.reg_filter.view(-1) # Get label function output_sigma_factor = self.fparams.attribute('output_sigma_factor') sigma = (self.filter_sz / self.img_support_sz) * torch.sqrt( self.base_target_sz.prod()) * output_sigma_factor self.yf = TensorList([ dcf.label_function(sz, sig).to(self.params.device) for sz, sig in zip(self.filter_sz, sigma) ]) # Optimization options self.params.precond_learning_rate = self.fparams.attribute( 'learning_rate') if self.params.CG_forgetting_rate is None or max( self.params.precond_learning_rate) >= 1: self.params.direction_forget_factor = 0 else: self.params.direction_forget_factor = ( 1 - max(self.params.precond_learning_rate) )**self.params.CG_forgetting_rate # Convert image im = numpy_to_torch(image) # Setup bounds self.image_sz = torch.Tensor([im.shape[2], im.shape[3]]) self.min_scale_factor = torch.max(10 / self.base_target_sz) self.max_scale_factor = torch.min(self.image_sz / self.base_target_sz) # Extract and transform sample x = self.generate_init_samples(im) # Initialize projection matrix x_mat = TensorList( [e.permute(1, 0, 2, 3).reshape(e.shape[1], -1).clone() for e in x]) x_mat -= x_mat.mean(dim=1, keepdim=True) cov_x = x_mat @ x_mat.t() self.projection_matrix = TensorList([ torch.svd(C)[0][:, :cdim].clone() for C, cdim in zip(cov_x, self.compressed_dim) ]) # Transform to get the training sample train_xf = self.preprocess_sample(x) # Shift the samples back if 'shift' in self.params.augmentation: for xf in train_xf: if xf.shape[0] == 1: continue for i, shift in enumerate(self.params.augmentation['shift']): shift_samp = 2 * math.pi * torch.Tensor( shift) / self.img_support_sz xf[1 + i:2 + i, ...] = fourier.shift_fs(xf[1 + i:2 + i, ...], shift=shift_samp) # Shift sample shift_samp = 2 * math.pi * (self.pos - self.pos.round()) / ( self.target_scale * self.img_support_sz) train_xf = fourier.shift_fs(train_xf, shift=shift_samp) # Initialize first-frame training samples num_init_samples = train_xf.size(0) self.init_sample_weights = TensorList( [xf.new_ones(1) / xf.shape[0] for xf in train_xf]) self.init_training_samples = train_xf.permute(2, 3, 0, 1, 4) # Sample counters and weights self.num_stored_samples = num_init_samples self.previous_replace_ind = [None] * len(self.num_stored_samples) self.sample_weights = TensorList( [xf.new_zeros(self.params.sample_memory_size) for xf in train_xf]) for sw, init_sw, num in zip(self.sample_weights, self.init_sample_weights, num_init_samples): sw[:num] = init_sw # Initialize memory self.training_samples = TensorList([ xf.new_zeros(xf.shape[2], xf.shape[3], self.params.sample_memory_size, cdim, 2) for xf, cdim in zip(train_xf, self.compressed_dim) ]) # Initialize filter self.filter = TensorList([ xf.new_zeros(1, cdim, xf.shape[2], xf.shape[3], 2) for xf, cdim in zip(train_xf, self.compressed_dim) ]) # Do joint optimization self.joint_problem = FactorizedConvProblem(self.init_training_samples, self.yf, self.reg_filter, self.projection_matrix, self.params, self.init_sample_weights) joint_var = self.filter.concat(self.projection_matrix) self.joint_optimizer = GaussNewtonCG(self.joint_problem, joint_var, debug=(self.params.debug >= 1), visdom=self.visdom) if self.params.update_projection_matrix: self.joint_optimizer.run( self.params.init_CG_iter // self.params.init_GN_iter, self.params.init_GN_iter) # Re-project samples with the new projection matrix compressed_samples = complex.mtimes(self.init_training_samples, self.projection_matrix) for train_samp, init_samp in zip(self.training_samples, compressed_samples): train_samp[:, :, :init_samp.shape[2], :, :] = init_samp # Initialize optimizer self.filter_optimizer = FilterOptim(self.params, self.reg_energy) self.filter_optimizer.register(self.filter, self.training_samples, self.yf, self.sample_weights, self.reg_filter) self.filter_optimizer.sample_energy = self.joint_problem.sample_energy self.filter_optimizer.residuals = self.joint_optimizer.residuals.clone( ) if not self.params.update_projection_matrix: self.filter_optimizer.run(self.params.init_CG_iter) # Post optimization self.filter_optimizer.run(self.params.post_init_CG_iter) self.symmetrize_filter() # metricnet_lof self.current_target_metric_feature = [] self.train_xf = [] # self.iou=[] # self.lof_thresh=3.5 self.lof_thresh = self.params.lof_rate
def initialize(self, image, info: dict, gpu_device) -> dict: # Initialize some stuff self.frame_num = 1 self.params.device = 'cuda:{0}'.format( gpu_device) if self.params.use_gpu else 'cpu' # Convert image im = numpy_to_torch(image) self.image_sz = torch.Tensor([im.shape[2], im.shape[3]]) # Initialize features self.initialize_features(im) # Chack if image is color self.params.features.set_is_color(image.shape[2] == 3) # Get feature specific params self.fparams = self.params.features.get_fparams('feature_params') # Get position and size self.points = TensorList( [torch.Tensor([p[0], p[1]]) for p in info['points']]) self.org_points = self.points.clone() self.target_sz = torch.Tensor( [info['target_sz'][0], info['target_sz'][1]]) # Use odd square search area and set sizes feat_max_stride = max(self.params.features.stride()) self.img_sample_sz = self.image_sz.clone() self.img_sample_sz += feat_max_stride - self.img_sample_sz % ( 2 * feat_max_stride) # Set other sizes (corresponds to ECO code) self.img_support_sz = self.img_sample_sz self.mid_point = self.img_support_sz // 2 self.feature_sz = self.params.features.size(self.img_sample_sz) self.filter_sz = self.feature_sz + (self.feature_sz + 1) % 2 self.output_sz = self.img_support_sz # Interpolated size of the output # Number of filters self.num_filters = len(self.filter_sz) # Get window function #self.window = TensorList([dcf.hann2d(sz).to(self.params.device) for sz in self.feature_sz]) self.window = TensorList([ torch.ones((1, 1, int(sz[0].item()), int(sz[1].item()))).to(self.params.device) for sz in self.feature_sz ]) #self.window = TensorList([dcf.tukey2d(sz).to(self.params.device) for sz in self.feature_sz]) # Get interpolation function self.interp_fs = TensorList([ dcf.get_interp_fourier(sz, self.params.interpolation_method, self.params.interpolation_bicubic_a, self.params.interpolation_centering, self.params.interpolation_windowing, self.params.device) for sz in self.filter_sz ]) # Get label function output_sigma_factor = self.fparams.attribute('output_sigma_factor') sigma = (self.filter_sz / self.img_support_sz) * torch.sqrt( self.target_sz.prod()) * output_sigma_factor yf_zero = TensorList([ dcf.label_function(sz, sig).to(self.params.device) for sz, sig in zip(self.filter_sz, sigma) ]) yf_zero = complex.complex(yf_zero) self.yf = TensorList() for p in self.points: shift_sample = 2 * math.pi * (self.mid_point - p) / self.img_support_sz self.yf.append( TensorList( [fourier.shift_fs(yfs, shift_sample) for yfs in yf_zero])) # Optimization options self.params.precond_learning_rate = self.fparams.attribute( 'learning_rate') if self.params.CG_forgetting_rate is None or max( self.params.precond_learning_rate) >= 1: self.params.direction_forget_factor = 0 else: self.params.direction_forget_factor = ( 1 - max(self.params.precond_learning_rate) )**self.params.CG_forgetting_rate # Extract and transform sample x = self.generate_init_samples(im).to(self.params.device) self.x = x # Transform to get the training sample train_xf = self.preprocess_sample(x) # Shift the samples back if 'shift' in self.params.augmentation: for xf in train_xf: if xf.shape[0] == 1: continue for i, shift in enumerate(self.params.augmentation['shift']): shift_samp = 2 * math.pi * torch.Tensor( shift) / self.img_support_sz xf[1 + i:2 + i, ...] = fourier.shift_fs(xf[1 + i:2 + i, ...], shift=shift_samp) # Initialize first-frame training samples num_init_samples = train_xf.size(0) self.init_training_samples = train_xf.permute(2, 3, 0, 1, 4) # Initialize memory # Initialize filter self.training_samples = TensorList([ xf.new_zeros(xf.shape[2], xf.shape[3], self.params.sample_memory_size, xf.shape[1], 2) for xf in train_xf ]) self.filters = TensorList([ TensorList([ xf.new_zeros(1, xf.shape[1], xf.shape[2], xf.shape[3], 2) for xf in train_xf ]) for i in range(len(self.points)) ]) self.init_sample_weights = TensorList( [xf.new_ones(1) / xf.shape[0] for xf in train_xf]) self.sample_weights = TensorList( [xf.new_zeros(self.params.sample_memory_size) for xf in train_xf]) for sw, init_sw, num in zip(self.sample_weights, self.init_sample_weights, num_init_samples): sw[:num] = init_sw # Get regularization filter self.reg_filter = TensorList([ dcf.get_reg_filter(self.img_support_sz, self.target_sz, fparams).to(self.params.device) for fparams in self.fparams ]) self.reg_energy = self.reg_filter.view(-1) @ self.reg_filter.view(-1) # Sample counters and weights self.num_stored_samples = num_init_samples self.previous_replace_ind = [None] * len(self.num_stored_samples) for train_samp, init_samp in zip(self.training_samples, self.init_training_samples): train_samp[:, :, :init_samp.shape[2], :, :] = init_samp sample_energy = complex.abs_sqr(self.training_samples).mean( dim=2, keepdim=True).permute(2, 3, 0, 1) # Do joint optimization for i in range(len(self.points)): print('{0}'.format(i), end=', ') ts = self.training_samples.clone() yf = self.yf[i] filters = self.filters[i] i_sw = self.init_sample_weights.clone() re = self.reg_energy.clone() sw = self.sample_weights.clone() rf = self.reg_filter.clone() filter_optimizer = FilterOptim(self.params, re) filter_optimizer.register(filters, ts, yf, sw, rf) filter_optimizer.sample_energy = sample_energy.clone() filter_optimizer.run(self.params.init_CG_iter) # Post optimization filter_optimizer.run(self.params.post_init_CG_iter) self.filters[i] = filter_optimizer.filter self.symmetrize_filter() print()