Example #1
0
def main():
    # Load the orders file.
    ordersFile = OrdersFile("orders.csv")
    print "First date", ordersFile.getFirstDate()
    print "Last date", ordersFile.getLastDate()
    print "Symbols", ordersFile.get_symbols()

    # Load the data from QSTK storage. QS environment variable has to be defined.
    feed = yahoofeed.Feed()
    feed.set_bar_filter(csvfeed.DateRangeFilter(ordersFile.getFirstDate(), ordersFile.getLastDate()))
    feed.set_daily_bar_time(datetime.time(0, 0, 0)) # This is to match the dates loaded with the ones in the orders file.
    for symbol in ordersFile.get_symbols():
        feed.add_bars_from_csv(symbol, os.path.join(os.getenv("QS"), "QSData", "Yahoo", symbol + ".csv"))

    # Run the strategy.
    cash = 1000000
    use_adjustedClose = True
    myStrategy = MyStrategy(feed, cash, ordersFile, use_adjustedClose)

    # Attach returns and sharpe ratio analyzers.
    retAnalyzer = returns.Returns()
    myStrategy.attach_analyzer(retAnalyzer)
    sharpeRatioAnalyzer = sharpe.SharpeRatio()
    myStrategy.attach_analyzer(sharpeRatioAnalyzer)

    myStrategy.run()

    # Print the results.
    print "Final portfolio value: $%.2f" % myStrategy.get_result()
    print "Anual return: %.2f %%" % (retAnalyzer.get_cumulative_returns()[-1] * 100)
    print "Average daily return: %.2f %%" % (stats.mean(retAnalyzer.get_returns()) * 100)
    print "Std. dev. daily return: %.4f" % (stats.stddev(retAnalyzer.get_returns()))
    print "Sharpe ratio: %.2f" % (sharpeRatioAnalyzer.get_sharpe_ratio(0, 252))
Example #2
0
def sharpe_ratio(returns, risk_free_rate, trading_periods, annualized=True):
    ret = 0.0

    # From http://en.wikipedia.org/wiki/Sharpe_ratio: if Rf is a constant risk-free return throughout the period,
    # then stddev(R - Rf) = stddev(R).
    volatility = stats.stddev(returns, 1)

    if volatility != 0:
        excess_returns = [daily_return - (risk_free_rate/float(trading_periods)) for daily_return in returns]
        average_excess_returns = stats.mean(excess_returns)
        ret = average_excess_returns / volatility
        if annualized:
            ret = ret * math.sqrt(trading_periods)
    return ret
Example #3
0
def sharpe_ratio(returns, risk_free_rate, trading_periods, annualized=True):
    ret = 0.0

    # From http://en.wikipedia.org/wiki/Sharpe_ratio: if Rf is a constant risk-free return throughout the period,
    # then stddev(R - Rf) = stddev(R).
    volatility = stats.stddev(returns, 1)

    if volatility != 0:
        excess_returns = [
            daily_return - (risk_free_rate / float(trading_periods))
            for daily_return in returns
        ]
        average_excess_returns = stats.mean(excess_returns)
        ret = average_excess_returns / volatility
        if annualized:
            ret = ret * math.sqrt(trading_periods)
    return ret
Example #4
0
def main():
    # Load the orders file.
    ordersFile = OrdersFile("orders.csv")
    print "First date", ordersFile.getFirstDate()
    print "Last date", ordersFile.getLastDate()
    print "Symbols", ordersFile.get_symbols()

    # Load the data from QSTK storage. QS environment variable has to be defined.
    feed = yahoofeed.Feed()
    feed.set_bar_filter(
        csvfeed.DateRangeFilter(ordersFile.getFirstDate(),
                                ordersFile.getLastDate()))
    feed.set_daily_bar_time(
        datetime.time(0, 0, 0)
    )  # This is to match the dates loaded with the ones in the orders file.
    for symbol in ordersFile.get_symbols():
        feed.add_bars_from_csv(
            symbol,
            os.path.join(os.getenv("QS"), "QSData", "Yahoo", symbol + ".csv"))

    # Run the strategy.
    cash = 1000000
    use_adjustedClose = True
    myStrategy = MyStrategy(feed, cash, ordersFile, use_adjustedClose)

    # Attach returns and sharpe ratio analyzers.
    retAnalyzer = returns.Returns()
    myStrategy.attach_analyzer(retAnalyzer)
    sharpeRatioAnalyzer = sharpe.SharpeRatio()
    myStrategy.attach_analyzer(sharpeRatioAnalyzer)

    myStrategy.run()

    # Print the results.
    print "Final portfolio value: $%.2f" % myStrategy.get_result()
    print "Anual return: %.2f %%" % (retAnalyzer.get_cumulative_returns()[-1] *
                                     100)
    print "Average daily return: %.2f %%" % (
        stats.mean(retAnalyzer.get_returns()) * 100)
    print "Std. dev. daily return: %.4f" % (stats.stddev(
        retAnalyzer.get_returns()))
    print "Sharpe ratio: %.2f" % (sharpeRatioAnalyzer.get_sharpe_ratio(0, 252))
Example #5
0
 def __testMeanImpl(self, values):
     self.__assertEqFloat(stats.mean(values), stats.py_mean(values))
Example #6
0
 def __testMeanImpl(self, values):
     self.__assertEqFloat(stats.mean(values), stats.py_mean(values))
Example #7
0
    def on_bars(self, bars):
        pass

# Load the yahoo feed from CSV files.
feed = yahoofeed.Feed()
feed.add_bars_from_csv("aeti", "aeti-2011-yahoofinance.csv")
feed.add_bars_from_csv("egan", "egan-2011-yahoofinance.csv")
feed.add_bars_from_csv("glng", "glng-2011-yahoofinance.csv")
feed.add_bars_from_csv("simo", "simo-2011-yahoofinance.csv")

# Evaluate the strategy with the feed's bars.
myStrategy = MyStrategy(feed)

# Attach returns and sharpe ratio analyzers.
retAnalyzer = returns.Returns()
myStrategy.attach_analyzer(retAnalyzer)
sharpeRatioAnalyzer = sharpe.SharpeRatio()
myStrategy.attach_analyzer(sharpeRatioAnalyzer)

# Run the strategy
myStrategy.run()

# Print the results.
print "Final portfolio value: $%.2f" % myStrategy.get_result()
print "Anual return: %.2f %%" % (retAnalyzer.get_cumulative_returns()[-1] * 100)
print "Average daily return: %.2f %%" % (stats.mean(retAnalyzer.get_returns()) * 100)
print "Std. dev. daily return: %.4f" % (stats.stddev(retAnalyzer.get_returns()))
print "Sharpe ratio: %.2f" % (sharpeRatioAnalyzer.get_sharpe_ratio(0, 252))

Example #8
0

# Load the yahoo feed from CSV files.
feed = yahoofeed.Feed()
feed.add_bars_from_csv("aeti", "aeti-2011-yahoofinance.csv")
feed.add_bars_from_csv("egan", "egan-2011-yahoofinance.csv")
feed.add_bars_from_csv("glng", "glng-2011-yahoofinance.csv")
feed.add_bars_from_csv("simo", "simo-2011-yahoofinance.csv")

# Evaluate the strategy with the feed's bars.
myStrategy = MyStrategy(feed)

# Attach returns and sharpe ratio analyzers.
retAnalyzer = returns.Returns()
myStrategy.attach_analyzer(retAnalyzer)
sharpeRatioAnalyzer = sharpe.SharpeRatio()
myStrategy.attach_analyzer(sharpeRatioAnalyzer)

# Run the strategy
myStrategy.run()

# Print the results.
print "Final portfolio value: $%.2f" % myStrategy.get_result()
print "Anual return: %.2f %%" % (retAnalyzer.get_cumulative_returns()[-1] *
                                 100)
print "Average daily return: %.2f %%" % (
    stats.mean(retAnalyzer.get_returns()) * 100)
print "Std. dev. daily return: %.4f" % (stats.stddev(
    retAnalyzer.get_returns()))
print "Sharpe ratio: %.2f" % (sharpeRatioAnalyzer.get_sharpe_ratio(0, 252))