Example #1
0
 def test_load_mnist_one_hot(self):
     mnist_mat_train, mnist_label_train \
       = dataset.load_mnist("sample_data", "training", one_hot = True)
     mnist_mat_test, mnist_label_test \
       = dataset.load_mnist("sample_data", "testing", one_hot = True)
     self.tlog("mnist train data size : " + str(len(mnist_mat_train)))
     self.tlog("mnist test data size : " + str(len(mnist_mat_test)))
Example #2
0
 def test_load_mnist(self):
     mnist_mat_train, mnist_label_train \
       = dataset.load_mnist("sample_data", "training", [0,1,2,3,4])
     mnist_mat_test, mnist_label_test \
       = dataset.load_mnist("sample_data", "testing", [0,1,2,3,4])
     self.tlog("mnist train data size : " + str(len(mnist_mat_train)))
     self.tlog("mnist test data size : " + str(len(mnist_mat_test)))
Example #3
0
    def test_process(self):
        dg_mat_train, dg_label_train = dataset.load_mnist(
            "sample_data", "training")
        dg_mat_test, dg_label_test = dataset.load_mnist(
            "sample_data", "testing")

        knn_digit = KNN(dg_mat_train, dg_label_train, 10, 'euclidean')
        error_rate = autotest.eval_predict(knn_digit, dg_mat_test,
                                           dg_label_test, self.logging)
        self.tlog("digit predict (with basic knn) error rate :" +
                  str(error_rate))
Example #4
0
    def test_process(self):
        dg_mat_train, dg_label_train = dataset.load_mnist("sample_data",
                                                          "training",
                                                          one_hot=True)
        dg_mat_test, dg_label_test = dataset.load_mnist("sample_data",
                                                        "testing",
                                                        one_hot=True)

        fnn = FNN(dg_mat_train, dg_label_train, [400, 100])
        fnn.fit(lr=0.01, epoch=1000, err_th=0.00001, batch_size=100)
        error_rate = autotest.eval_predict(fnn,
                                           dg_mat_test,
                                           dg_label_test,
                                           self.logging,
                                           one_hot=True)
        self.tlog("digit predict (with fnn) error rate :" + str(error_rate))
    def test_process(self):
        dg_mat_train, dg_label_train = dataset.load_mnist("sample_data",
                                                          "training",
                                                          one_hot=True)
        dg_mat_test, dg_label_test = dataset.load_mnist("sample_data",
                                                        "testing",
                                                        one_hot=True)

        logistic_reg = LogisticRegression(dg_mat_train, dg_label_train)
        logistic_reg.fit(lr=0.0001, epoch=1000, batch_size=100)
        error_rate = autotest.eval_predict(logistic_reg,
                                           dg_mat_test,
                                           dg_label_test,
                                           self.logging,
                                           one_hot=True)
        self.tlog("digit predict (with logistic regression) error rate :" +
                  str(error_rate))
Example #6
0
    def test_process(self):
        dg_mat_train, dg_label_train = dataset.load_mnist("sample_data",
                                                          "training",
                                                          one_hot=True)
        dg_mat_test, dg_label_test = dataset.load_mnist("sample_data",
                                                        "testing",
                                                        one_hot=True)

        svc = SVC(dg_mat_train, dg_label_train)
        svc.fit(C=1.5,
                toler=0.0001,
                epoch=1000,
                kernel="RBF",
                kernel_params={"gamma": 0.7})
        error_rate = autotest.eval_predict(svc,
                                           dg_mat_test,
                                           dg_label_test,
                                           self.logging,
                                           one_hot=True)
        self.tlog("digit predict (with svc) error rate :" + str(error_rate))