Example #1
0
from pyts.transformation import GASF, GADF
from pyts import transformation, classification, visualization

gasf = GASF(image_size=61, overlapping=False, scale='-1')
X_gasf = gasf.transform(X_standardized)
X_gasf.ndim
#3
Xt_gasf = gasf.transform(Xt_standardized)

gadf = GADF(image_size=61, overlapping=False, scale='-1')
X_gadf = gadf.transform(X_standardized)
Xt_gadf = gadf.transform(Xt_standardized)

from pyts.visualization import plot_gasf

plot_gasf(X_standardized[0], image_size=61, overlapping=False, scale='-1')

from pyts.visualization import plot_gadf

plot_gadf(X_standardized[4], image_size=30, overlapping=False, scale='-1')

x_train = X_gadf.reshape
x_train = X_gadf.reshape(X_gadf.shape[0], 61, 61, 1)
x_test = Xt_gadf.reshape(Xt_gadf.shape[0], 61, 61, 1)
#-----------------------------------------------------------------------------------------------------------------------------------------------------


def auc_roc(y_true, y_pred):
    # any tensorflow metric
    value, update_op = tf.contrib.metrics.streaming_auc(y_pred, y_true)
Example #2
0
    # gasf = GASF(image_size=100, overlapping=False, scale='0')
    # X_gasf = gasf.transform
    concerned_layers = [
        "conv1d_1", "conv1d_2", "conv1d_3", "conv1d_4", "conv1d_5", "conv1d_6",
        "conv1d_7", "conv1d_8"
    ]
    for concerned_layer in concerned_layers:
        print concerned_layer
        layer = model.get_layer(concerned_layer)
        all_filters = layer.get_weights()[0]
        reorganized_filters = []
        for i in range(num_filters):
            print i
            temp_filter = []
            for filter in all_filters:
                temp_filter.append(filter[0][i])
            reorganized_filters.append(np.array(temp_filter))

        from pyts.visualization import plot_gasf
        filter_index = 0
        for reorganized_filter in reorganized_filters:
            plot_gasf(reorganized_filter,
                      image_size=kernel_size,
                      overlapping=False,
                      scale='0',
                      output_file="layer_%s_filter%s" %
                      (concerned_layer, filter_index))
            filter_index += 1

print("--- train %s seconds ---" % (time.time() - start_time))