Example #1
0
 def testInstantiateTypeParameterType(self):
     params = {abstract.T: abstract.TypeParameter(abstract.T, self._vm)}
     cls = abstract.ParameterizedClass(self._vm.convert.type_type, params,
                                       self._vm)
     self.assertListEqual(
         cls.instantiate(self._node).data, [self._vm.convert.unsolvable])
Example #2
0
 def create_new_kwargs_value(self, arg_type):
     """Create a kwargs argument given its element type."""
     params = {abstract_utils.K: self.str_type, abstract_utils.V: arg_type}
     return abstract.ParameterizedClass(self.dict_type, params, self.vm)
Example #3
0
 def testClassAgainstTypeUnion(self):
     left = self._make_class("foo")
     union = abstract.Union((left, ), self.vm)
     right = abstract.ParameterizedClass(self.type_type,
                                         {abstract.T: union}, self.vm)
     self.assertMatch(left, right)
Example #4
0
 def create_new_varargs_value(self, arg_type):
     """Create a varargs argument given its element type."""
     params = {abstract_utils.T: arg_type}
     return abstract.ParameterizedClass(self.tuple_type, params, self.vm)
Example #5
0
    def _build_namedtuple(self, name, field_names, field_types, late_annots,
                          node):
        # Build an InterpreterClass representing the namedtuple.
        if field_types:
            # TODO(mdemello): Fix this to support late types.
            field_types_union = abstract.Union(field_types, self.vm)
        else:
            field_types_union = self.vm.convert.none_type

        members = {
            n: t.instantiate(node)
            for n, t in moves.zip(field_names, field_types)
        }

        # collections.namedtuple has: __dict__, __slots__ and _fields.
        # typing.NamedTuple adds: _field_types, __annotations__ and _field_defaults.
        # __slots__ and _fields are tuples containing the names of the fields.
        slots = tuple(
            self.vm.convert.build_string(node, f) for f in field_names)
        members["__slots__"] = abstract.Tuple(slots, self.vm).to_variable(node)
        members["_fields"] = abstract.Tuple(slots, self.vm).to_variable(node)
        # __dict__ and _field_defaults are both collections.OrderedDicts that map
        # field names (strings) to objects of the field types.
        ordered_dict_cls = self.vm.convert.name_to_value(
            "collections.OrderedDict", ast=self.collections_ast)

        # In Python 2, keys can be `str` or `unicode`; support both.
        # In Python 3, `str_type` and `unicode_type` are the same.
        field_keys_union = abstract.Union(
            [self.vm.convert.str_type, self.vm.convert.unicode_type], self.vm)

        # Normally, we would use abstract_utils.K and abstract_utils.V, but
        # collections.pyi doesn't conform to that standard.
        field_dict_cls = abstract.ParameterizedClass(ordered_dict_cls, {
            "K": field_keys_union,
            "V": field_types_union
        }, self.vm)
        members["__dict__"] = field_dict_cls.instantiate(node)
        members["_field_defaults"] = field_dict_cls.instantiate(node)
        # _field_types and __annotations__ are both collections.OrderedDicts
        # that map field names (strings) to the types of the fields.
        field_types_cls = abstract.ParameterizedClass(
            ordered_dict_cls, {
                "K": field_keys_union,
                "V": self.vm.convert.type_type
            }, self.vm)
        members["_field_types"] = field_types_cls.instantiate(node)
        members["__annotations__"] = field_types_cls.instantiate(node)

        # __new__
        # We set the bound on this TypeParameter later. This gives __new__ the
        # signature: def __new__(cls: Type[_Tname], ...) -> _Tname, i.e. the same
        # signature that visitor.CreateTypeParametersForSignatures would create.
        # This allows subclasses of the NamedTuple to get the correct type from
        # their constructors.
        cls_type_param = abstract.TypeParameter(
            visitors.CreateTypeParametersForSignatures.PREFIX + name,
            self.vm,
            bound=None)
        cls_type = abstract.ParameterizedClass(
            self.vm.convert.type_type, {abstract_utils.T: cls_type_param},
            self.vm)
        # Use late annotations as field types if they exist.
        params = [
            Param(n, late_annots.get(n, t))
            for n, t in moves.zip(field_names, field_types)
        ]
        members["__new__"] = overlay_utils.make_method(
            self.vm,
            node,
            name="__new__",
            self_param=Param("cls", cls_type),
            params=params,
            return_type=cls_type_param,
        )

        # __init__
        members["__init__"] = overlay_utils.make_method(self.vm,
                                                        node,
                                                        name="__init__",
                                                        varargs=Param("args"),
                                                        kwargs=Param("kwargs"))

        # _make
        # _make is a classmethod, so it needs to be wrapped by
        # specialibuiltins.ClassMethodInstance.
        # Like __new__, it uses the _Tname TypeVar.
        sized_cls = self.vm.convert.name_to_value("typing.Sized")
        iterable_type = abstract.ParameterizedClass(
            self.vm.convert.name_to_value("typing.Iterable"),
            {abstract_utils.T: field_types_union}, self.vm)
        cls_type = abstract.ParameterizedClass(
            self.vm.convert.type_type, {abstract_utils.T: cls_type_param},
            self.vm)
        len_type = abstract.CallableClass(
            self.vm.convert.name_to_value("typing.Callable"), {
                0: sized_cls,
                abstract_utils.ARGS: sized_cls,
                abstract_utils.RET: self.vm.convert.int_type
            }, self.vm)
        params = [
            Param("iterable", iterable_type),
            Param("new").unsolvable(self.vm, node),
            Param("len", len_type).unsolvable(self.vm, node)
        ]
        make = overlay_utils.make_method(self.vm,
                                         node,
                                         name="_make",
                                         params=params,
                                         self_param=Param("cls", cls_type),
                                         return_type=cls_type_param)
        make_args = function.Args(posargs=(make, ))
        _, members["_make"] = self.vm.special_builtins["classmethod"].call(
            node, None, make_args)

        # _replace
        # Like __new__, it uses the _Tname TypeVar. We have to annotate the `self`
        # param to make sure the TypeVar is substituted correctly.
        members["_replace"] = overlay_utils.make_method(
            self.vm,
            node,
            name="_replace",
            self_param=Param("self", cls_type_param),
            return_type=cls_type_param,
            kwargs=Param("kwds", field_types_union))

        # __getnewargs__
        getnewargs_tuple_params = dict(
            tuple(enumerate(field_types)) +
            ((abstract_utils.T, field_types_union), ))
        getnewargs_tuple = abstract.TupleClass(self.vm.convert.tuple_type,
                                               getnewargs_tuple_params,
                                               self.vm)
        members["__getnewargs__"] = overlay_utils.make_method(
            self.vm, node, name="__getnewargs__", return_type=getnewargs_tuple)

        # __getstate__
        members["__getstate__"] = overlay_utils.make_method(
            self.vm, node, name="__getstate__")

        # _asdict
        members["_asdict"] = overlay_utils.make_method(
            self.vm, node, name="_asdict", return_type=field_dict_cls)

        # Finally, make the class.
        cls_dict = abstract.Dict(self.vm)
        cls_dict.update(node, members)
        if name.__class__ is compat.UnicodeType:
            # Unicode values should be ASCII.
            name = compat.native_str(name.encode("ascii"))

        node, cls_var = self.vm.make_class(
            node=node,
            name_var=self.vm.convert.build_string(node, name),
            bases=[self.vm.convert.tuple_type.to_variable(node)],
            class_dict_var=cls_dict.to_variable(node),
            cls_var=None)
        cls = cls_var.data[0]

        # Now that the class has been made, we can complete the TypeParameter used
        # by __new__, _make and _replace.
        cls_type_param.bound = cls

        # Add late annotations to the new class
        if late_annots:
            cls.late_annotations = late_annots
            self.vm.classes_with_late_annotations.append(cls)

        return node, cls_var
Example #6
0
    def _build_namedtuple(self, name, field_names, field_types, node):
        # Build an InterpreterClass representing the namedtuple.
        if field_types:
            field_types_union = abstract.Union(field_types, self.vm)
        else:
            field_types_union = self.vm.convert.none_type

        members = {
            n: t.instantiate(node)
            for n, t in moves.zip(field_names, field_types)
        }
        # collections.namedtuple has: __dict__, __slots__ and _fields.
        # typing.NamedTuple adds: _field_types, __annotations__ and _field_defaults.
        # __slots__ and _fields are tuples containing the names of the fields.
        slots = tuple(
            self.vm.convert.build_string(node, f) for f in field_names)
        members["__slots__"] = abstract.Tuple(slots, self.vm).to_variable(node)
        members["_fields"] = abstract.Tuple(slots, self.vm).to_variable(node)
        # __dict__ and _field_defaults are both collections.OrderedDicts that map
        # field names (strings) to objects of the field types.
        ordered_dict_cls = self.vm.convert.name_to_value(
            "collections.OrderedDict", ast=self.collections_ast)

        # In Python 2, keys can be `str` or `unicode`; support both.
        # In Python 3, `str_type` and `unicode_type` are the same.
        field_keys_union = abstract.Union(
            [self.vm.convert.str_type, self.vm.convert.unicode_type], self.vm)

        # Normally, we would use abstract_utils.K and abstract_utils.V, but
        # collections.pyi doesn't conform to that standard.
        field_dict_cls = abstract.ParameterizedClass(ordered_dict_cls, {
            "K": field_keys_union,
            "V": field_types_union
        }, self.vm)
        members["__dict__"] = field_dict_cls.instantiate(node)
        members["_field_defaults"] = field_dict_cls.instantiate(node)
        # _field_types and __annotations__ are both collections.OrderedDicts
        # that map field names (strings) to the types of the fields.
        field_types_cls = abstract.ParameterizedClass(
            ordered_dict_cls, {
                "K": field_keys_union,
                "V": self.vm.convert.type_type
            }, self.vm)
        members["_field_types"] = field_types_cls.instantiate(node)
        members["__annotations__"] = field_types_cls.instantiate(node)
        # __new__
        new_annots = {}
        new_lates = {}
        for (n, t) in moves.zip(field_names, field_types):
            # We don't support late annotations yet, but once we do, they'll show up
            # as LateAnnotation objects to be stored in new_lates.
            new_annots[n] = t
        # We set the bound on this TypeParameter later. This gives __new__ the
        # signature: def __new__(cls: Type[_Tname], ...) -> _Tname, i.e. the same
        # signature that visitor.CreateTypeParametersForSignatures would create.
        # This allows subclasses of the NamedTuple to get the correct type from
        # their constructors.
        cls_type_param = abstract.TypeParameter(
            visitors.CreateTypeParametersForSignatures.PREFIX + name,
            self.vm,
            bound=None)
        new_annots["cls"] = abstract.ParameterizedClass(
            self.vm.convert.type_type, {abstract_utils.T: cls_type_param},
            self.vm)
        new_annots["return"] = cls_type_param
        members["__new__"] = abstract.SimpleFunction(
            name="__new__",
            param_names=("cls", ) + tuple(field_names),
            varargs_name=None,
            kwonly_params=(),
            kwargs_name=None,
            defaults={},
            annotations=new_annots,
            late_annotations=new_lates,
            vm=self.vm).to_variable(node)
        # __init__
        members["__init__"] = abstract.SimpleFunction(
            name="__init__",
            param_names=("self", ),
            varargs_name="args",
            kwonly_params=(),
            kwargs_name="kwargs",
            defaults={},
            annotations={},
            late_annotations={},
            vm=self.vm).to_variable(node)
        # _make
        # _make is a classmethod, so it needs to be wrapped by
        # specialibuiltins.ClassMethodInstance.
        # Like __new__, it uses the _Tname TypeVar.
        sized_cls = self.vm.convert.name_to_value("typing.Sized")
        iterable_type = abstract.ParameterizedClass(
            self.vm.convert.name_to_value("typing.Iterable"),
            {abstract_utils.T: field_types_union}, self.vm)
        make = abstract.SimpleFunction(
            name="_make",
            param_names=("cls", "iterable", "new", "len"),
            varargs_name=None,
            kwonly_params=(),
            kwargs_name=None,
            defaults={
                "new": self.vm.convert.unsolvable.to_variable(node),
                "len": self.vm.convert.unsolvable.to_variable(node)
            },
            annotations={
                "cls":
                abstract.ParameterizedClass(self.vm.convert.type_type,
                                            {abstract_utils.T: cls_type_param},
                                            self.vm),
                "iterable":
                iterable_type,
                "new":
                self.vm.convert.unsolvable,
                "len":
                abstract.Callable(
                    self.vm.convert.name_to_value("typing.Callable"), {
                        0: sized_cls,
                        abstract_utils.ARGS: sized_cls,
                        abstract_utils.RET: self.vm.convert.int_type
                    }, self.vm),
                "return":
                cls_type_param
            },
            late_annotations={},
            vm=self.vm).to_variable(node)
        make_args = function.Args(posargs=(make, ))
        _, members["_make"] = self.vm.special_builtins["classmethod"].call(
            node, None, make_args)
        # _replace
        # Like __new__, it uses the _Tname TypeVar. We have to annotate the `self`
        # param to make sure the TypeVar is substituted correctly.
        members["_replace"] = abstract.SimpleFunction(
            name="_replace",
            param_names=("self", ),
            varargs_name=None,
            kwonly_params=(),
            kwargs_name="kwds",
            defaults={},
            annotations={
                "self": cls_type_param,
                "kwds": field_types_union,
                "return": cls_type_param
            },
            late_annotations={},
            vm=self.vm).to_variable(node)
        # __getnewargs__
        getnewargs_tuple_params = dict(
            tuple(enumerate(field_types)) +
            ((abstract_utils.T, field_types_union), ))
        getnewargs_tuple = abstract.TupleClass(self.vm.convert.tuple_type,
                                               getnewargs_tuple_params,
                                               self.vm)
        members["__getnewargs__"] = abstract.SimpleFunction(
            name="__getnewargs__",
            param_names=("self", ),
            varargs_name=None,
            kwonly_params=(),
            kwargs_name=None,
            defaults={},
            annotations={
                "return": getnewargs_tuple
            },
            late_annotations={},
            vm=self.vm).to_variable(node)
        # __getstate__
        members["__getstate__"] = abstract.SimpleFunction(
            name="__getstate__",
            param_names=("self", ),
            varargs_name=None,
            kwonly_params=(),
            kwargs_name=None,
            defaults={},
            annotations={},
            late_annotations={},
            vm=self.vm).to_variable(node)
        # _asdict
        members["_asdict"] = abstract.SimpleFunction(
            name="_asdict",
            param_names=("self", ),
            varargs_name=None,
            kwonly_params=(),
            kwargs_name=None,
            defaults={},
            annotations={
                "return": field_dict_cls
            },
            late_annotations={},
            vm=self.vm).to_variable(node)
        # Finally, make the class.
        abs_membs = abstract.Dict(self.vm)
        abs_membs.update(node, members)
        cls_var = self.vm.make_class(
            node=node,
            name_var=self.vm.convert.build_string(node, name),
            bases=[self.vm.convert.tuple_type.to_variable(node)],
            class_dict_var=abs_membs.to_variable(node),
            cls_var=None)
        # Now that the class has been made, we can complete the TypeParameter used
        # by __new__, _make and _replace.
        cls_type_param.bound = cls_var.data[0]
        return cls_var
Example #7
0
  def construct_constant_from_value(self, name, pyval, subst, node):
    """Create a AtomicAbstractValue that represents a python constant.

    This supports both constant from code constant pools and PyTD constants such
    as classes. This also supports builtin python objects such as int and float.

    Args:
      name: The name of this constant. Used for naming its attribute variables.
      pyval: The python or PyTD value to convert.
      subst: The current type parameters.
      node: The current CFG node.
    Returns:
      A Value that represents the constant, or None if we couldn't convert.
    Raises:
      NotImplementedError: If we don't know how to convert a value.
    """
    if pyval is type:
      return abstract.SimpleAbstractValue(name, self.vm)
    elif isinstance(pyval, str):
      return abstract.AbstractOrConcreteValue(
          pyval, self.str_type, self.vm, node)
    elif isinstance(pyval, int) and -1 <= pyval <= MAX_IMPORT_DEPTH:
      # For small integers, preserve the actual value (for things like the
      # level in IMPORT_NAME).
      return abstract.AbstractOrConcreteValue(
          pyval, self.int_type, self.vm, node)
    elif pyval.__class__ in self.primitive_classes:
      return self.primitive_class_instances[pyval.__class__]
    elif isinstance(pyval, (loadmarshal.CodeType, blocks.OrderedCode)):
      return abstract.AbstractOrConcreteValue(
          pyval, self.primitive_classes[types.CodeType], self.vm, node)
    elif pyval.__class__ in [types.FunctionType,
                             types.ModuleType,
                             types.GeneratorType,
                             type]:
      try:
        pyclass = self.vm.vmbuiltins.Lookup("__builtin__." + pyval.__name__)
        return self.convert_constant_to_value(name, pyclass, subst, node)
      except (KeyError, AttributeError):
        log.debug("Failed to find pytd", exc_info=True)
        raise
    elif isinstance(pyval, pytd.TypeDeclUnit):
      data = pyval.constants + pyval.classes + pyval.functions + pyval.aliases
      members = {val.name.rsplit(".")[-1]: val
                 for val in data}
      return abstract.Module(self.vm, node, pyval.name, members)
    elif isinstance(pyval, pytd.Class):
      if "." in pyval.name:
        module, base_name = pyval.name.rsplit(".", 1)
        cls = abstract.PyTDClass(base_name, pyval, self.vm)
        cls.module = module
      else:
        cls = abstract.PyTDClass(name, pyval, self.vm)
      return cls
    elif isinstance(pyval, pytd.Function):
      signatures = [abstract.PyTDSignature(pyval.name, sig, self.vm)
                    for sig in pyval.signatures]
      f = abstract.PyTDFunction(
          pyval.name, signatures, pyval.kind, self.vm, node)
      return f
    elif isinstance(pyval, pytd.ClassType):
      assert pyval.cls
      return self.convert_constant_to_value(pyval.name, pyval.cls, subst, node)
    elif isinstance(pyval, pytd.NothingType):
      return self.nothing
    elif isinstance(pyval, pytd.AnythingType):
      # TODO(kramm): This should be an Unsolveable. We don't need to solve this.
      return self._create_new_unknown_value("AnythingType")
    elif isinstance(pyval, pytd.FunctionType):
      return self.construct_constant_from_value(
          name, pyval.function, subst, node)
    elif isinstance(pyval, pytd.UnionType):
      return abstract.Union([
          self.convert_constant_to_value(pytd.Print(t), t, subst, node)
          for t in pyval.type_list], self.vm)
    elif isinstance(pyval, pytd.TypeParameter):
      return abstract.TypeParameter(pyval.name, self.vm)
    elif isinstance(pyval, abstract.AsInstance):
      cls = pyval.cls
      if isinstance(cls, pytd.ClassType):
        cls = cls.cls
      if isinstance(cls, pytd.Class):
        # This key is also used in __init__
        key = (abstract.Instance, cls)
        if key not in self._convert_cache:
          if cls.name in ["__builtin__.type", "__builtin__.property"]:
            # An instance of "type" or of an anonymous property can be anything.
            instance = self._create_new_unknown_value("type")
          else:
            mycls = self.convert_constant(cls.name, cls, subst, node)
            instance = abstract.Instance(mycls, self.vm, node)
          log.info("New pytd instance for %s: %r", cls.name, instance)
          self._convert_cache[key] = instance
        return self._convert_cache[key]
      elif isinstance(cls, pytd.GenericType):
        assert isinstance(cls.base_type, pytd.ClassType)
        base_cls = cls.base_type.cls
        instance = abstract.Instance(
            self.convert_constant(base_cls.name, base_cls, subst, node),
            self.vm, node)
        for formal, actual in zip(base_cls.template, cls.parameters):
          p = self.convert_constant(
              repr(formal), abstract.AsInstance(actual), subst, node)
          instance.initialize_type_parameter(node, formal.name, p)
        return instance
      else:
        return self.convert_constant_to_value(name, cls, subst, node)
    elif isinstance(pyval, pytd.GenericType):
      assert isinstance(pyval.base_type, pytd.ClassType)
      type_parameters = utils.LazyDict()
      for param, value in zip(pyval.base_type.cls.template, pyval.parameters):
        type_parameters.add_lazy_item(
            param.name, self.convert_constant_to_value,
            param.name, value, subst, node)
      cls = self.convert_constant_to_value(
          pytd.Print(pyval.base_type), pyval.base_type.cls, subst, node)
      return abstract.ParameterizedClass(cls, type_parameters, self.vm)
    elif pyval.__class__ is tuple:  # only match raw tuple, not namedtuple/Node
      return self.tuple_to_value(self.vm.root_cfg_node,
                                 [self.convert_constant("tuple[%d]" % i, item,
                                                        subst, node)
                                  for i, item in enumerate(pyval)])
    else:
      raise NotImplementedError("Can't convert constant %s %r" %
                                (type(pyval), pyval))
Example #8
0
 def make_initvar(t):
   return abstract.ParameterizedClass(
       initvar, {abstract_utils.T: t}, self.vm)