Example #1
0
This is a Python code for Bispectrum on any scalar(Temprature only) map 
we use Binned Bispectrum estimator Bucher et. al. 2010 and
arXiv:1509.08107v2 also see Casponsa et. al. 2014
Extensively use of Healpy and Healpix thanks to Gorski et.al. 2005
Eric Hivon and Andrea Zonca for Healpy
"""

import numpy as np
import healpy as hp
from multiprocessing import Process
# pywigxjpf for to import python routine to evaluate
# wigner 3j coefficient that comes in Guant integral
import pywigxjpf as wig

wig.wig_table_init(1000)
wig.wig_temp_init(1000)

name = "/home/sandeep/Haslam/lambda_haslam408_dsds.fits"
print name
Haslam_512 = hp.fitsfunc.read_map(
    name)  # Here we Use map from point source subtracted from lambda


def masking_map(map1, nside, npixs, limit):
    """
    This routine to apply mask that we decided using count in cell 
    scheme, we returning masked map and Binary Mask.
    """
    area = hp.pixelfunc.nside2pixarea(nside, degrees=False)
    b_mask = np.zeros(hp.nside2npix(nside), dtype=np.double)  # Binary Mask
Example #2
0
rc('font',**{'family':'serif','serif':['Times','Palatino']})
rc('text', usetex=True)
mpl.rcParams['xtick.major.size']=8
mpl.rcParams['ytick.major.size']=8
mpl.rcParams['xtick.labelsize']=18
mpl.rcParams['ytick.labelsize']=18
import os,os.path,shutil

#from sympy import N
#from sympy.physics.wigner import wigner_3j
import pywigxjpf as wig


lmax = 5000
wig.wig_table_init(2*lmax,9)
wig.wig_temp_init(2*lmax)

# Free memory space
#wig.wig_temp_free()
#wig.wig_table_free()

Tcmb = 2.7255 * 1e6 # CMB temperature in uK
spectra = np.loadtxt('scalCls.dat')
ls = spectra[:lmax-1,0]
tt = spectra[:lmax-1,1] * (2.*np.pi) / ls / (ls + 1) #/ Tcmb

NET = 30 # Planck noise in uK(sec)**0.5 = 30; AdvACT: 5
tobs = 2.5 # Planck observation time in years = 2.5yr; AdvACT 2.
fsky = 0.75 # Planck fsky=0.75; AdvACT 0.5

fwhm = 5. #Planck resolution = 5. arcmin; AdvACT 1.3
Example #3
0
import pywigxjpf as wig

import sys

failure = int(sys.argv[1])

print('WIGXJPF python error handling test (%d)' % failure)
sys.stdout.flush()

# Initialize
if (failure != 1):
    wig.wig_table_init(2 * 100 if failure != 2 else 2 * 1,
                       9 if failure != 3 else -1)
if (failure != 4):
    wig.wig_temp_init(2 * 100 if failure != 5 else 1)

# Note that arguments are in two_j = 2*j.
val3j = wig.wig3jj(2* 10 , 2* 15 , 2* 10 ,\
                   2*(-3), 2* 12 , 2*(-9))
if failure == 6:
    val3j = wig.wig3jj(2* 1000 , 2* 1500 , 2* 1000 ,\
                       2*(-300), 2* 1200 , 2*(-900))
print('3J(10  15  10; -3  12  -9): %.12g' % val3j)
sys.stdout.flush()

val6j = wig.wig6jj(2* 10 , 2* 15 , 2* 10 ,\
                   2*  7,  2*  7 , 2*  9)
if failure == 7:
    val6j = wig.wig6jj(2* 1000 , 2* 1500 , 2* 1000 ,\
                       2*  700,  2*  700 , 2*  900)
Example #4
0
#  WITHOUT ANY WARRANTY; without even the implied warranty of
#  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
#  Lesser General Public License for more details.
#
#  You should have received a copy of the GNU Lesser General Public
#  License along with WIGXJPF.  If not, see
#  <http://www.gnu.org/licenses/>.
#

import pywigxjpf as wig

print('WIGXJPF python test program')

# Initialize
wig.wig_table_init(2 * 100, 9)
wig.wig_temp_init(2 * 100)

# Note that arguments are in two_j = 2*j.
val3j = wig.wig3jj(2* 10 , 2* 15 , 2* 10 ,\
                   2*(-3), 2* 12 , 2*(-9))
print('3J(10  15  10; -3  12  -9): %.12g' % val3j)

val6j = wig.wig6jj(2* 10 , 2* 15 , 2* 10 ,\
                   2*  7,  2*  7 , 2*  9)
print('6J{10  15  10;  7   7   9}: %.12g' % val6j)

val9j = wig.wig9jj( 1,  2,  3,\
                    4,  6,  8, \
                    3,  6,  9 )
print('9J{0.5 1 1.5; 2 3 4; 1.5 3 4.5}: %.12g' % val9j)
import pywigxjpf
pywigxjpf.wig_table_init(2*100, 9)
pywigxjpf.wig_temp_init(2*100)

def clebsch_gordan(two_j1,  two_j2,  two_j3,  two_m1,  two_m2,  two_m3):
    from math import sqrt
    threej = pywigxjpf.wig3jj((two_j1,  two_j2,  two_j3,
                             two_m1,  two_m2,  -two_m3))
    phase = -1 if (two_m3+two_j1-two_j2) % 4 == 2 else 1
    return phase * sqrt(float(two_j3+1)) * threej

def Wigner_d(j, m1, m2, x):
    # using definition from A.R. Edmonds, eq 4.1.23
    from scipy.special import factorial, eval_jacobi
    from numpy import sqrt
    mp, m = m1, m2
    p = 1
    if mp + m < 0:
        mp, m = -mp, -m
        p *= (-1) ** (mp - m)
    if mp < m:
        mp, m = m, mp
        p *= (-1) ** (mp - m)
    return (p * 
        sqrt(
            factorial(j + mp) * factorial(j - mp) / 
            (factorial(j + m) * factorial(j - m))
            ) * 
        sqrt(.5 + .5 * x) ** (mp + m) * 
        sqrt(.5 - .5 * x) ** (mp - m) * 
        eval_jacobi(j - mp, mp - m, mp + m, x)
Example #6
0
import matplotlib
matplotlib.use('agg')
import matplotlib.pyplot as plt
import numpy as np
import sys
sys.path.insert(0, './../wigxjpf-1.6/pywigxjpf')
import pywigxjpf as wig
import os

opj = os.path.join
outdir = '/mn/stornext/d8/ITA/spider/adri/analysis/20180108_test_spin'

# Initialize
wig.wig_table_init(2 * 200, 3)
wig.wig_temp_init(2 * 200)

# Note that arguments are in two_j = 2*j.
#val3j = wig.wig3jj([2* 10 , 2* 15 , 2* 10 ,\
#                    2*(-3), 2* 12 , 2*(-9)])
#print '3J(10  15  10; -3  12  -9):', val3j

m = 1
lmax = 100
trans = np.zeros((lmax + 1, lmax + 1), dtype=float)


def i_ell(ell):
    ret = np.sqrt((2 * ell + 1) / 4. / np.pi)
    ret *= 4 * (-1)**ell
    ret /= float((ell * (ell + 1)))
    return ret
Example #7
0
    else:
        alms = np.load(data_path + newname, 'r')
        if intensity and pol:
            return alms[0], alms[1], alms[2]
        else:
            if intensity:
                return alms[0]
            if pol:
                return alms[1], alms[2]


import pywigxjpf as wig
lmax = 200
wig.wig_table_init(2 * lmax, 9)
wig.wig_temp_init(2 * lmax)


@jit
def get_w3j(l1, l2, l3, m1, m2, m3):
    return wig.wig3jj([2 * l1, 2 * l2, 2 * l3, 2 * m1, 2 * m2, 2 * m3])


def get_TEB_prerequisites(maps=None,
                          Imap_label='353',
                          Pmap_label='353',
                          Imap_name=None,
                          Pmap_name=None,
                          lmax=100,
                          masktype='PowerSpectra',
                          rewrite=False,
Example #8
0
class binned_bispectrum:

    map_making.nside_f_est = 512
    map_making.masking = 'No'
    map_making.apodization = 'No'
    wig.wig_table_init(1000)
    wig.wig_temp_init(1000)

    # binned map  equation(6) casaponsa et. al.

    def __init__(self,
                 Inp_alm_l,
                 Inp_alm_nl,
                 inp_bin,
                 inp_fNL,
                 NSIDE=1024,
                 LMAX=2500):
        self.Inp_alm_l = Inp_alm_l
        self.Inp_alm_nl = Inp_alm_nl
        self.inp_bin = inp_bin
        self.Nbins = len(inp_bin)
        self.LMAX = LMAX
        self.FNL = inp_fNL
        self.NSIDE = NSIDE
        test1 = map_making(self.NSIDE)
        self.esti_map, self.ap_ma, self.binL = test1.binned_map(
            self.Nbins,
            self.LMAX,
            self.inp_bin,
            self.FNL,
            self.Inp_alm_l,
            self.Inp_alm_nl,
            beam=None,
            map_type='Non gaussian',
            beam_corr=None)

        self.nbin = len(inp_bin)
        self.npix = hp.nside2npix(self.NSIDE)
        self.bis = list()
        self.I = list()
        self.J = list()
        self.K = list()
        self.trip_count = list()

    def bispectrum(self):
        """
        :rtype: object
        :return:
        """
        for i in xrange(0, self.nbin - 1):
            for j in xrange(i, self.nbin - 1):
                for k in xrange(j, self.nbin - 1):

                    if np.min(self.binL[k]) - np.max(self.binL[j]) <= np.max(self.binL[i]) <= np.max(self.binL[k]) \
                              + np.max(self.binL[j]):

                        temp = summation(self.esti_map[i, :],
                                         self.esti_map[j, :],
                                         self.esti_map[k, :], self.ap_ma,
                                         self.npix)
                        self.trip_count.append(
                            count_triplet(np.min(self.binL[k]),
                                          np.max(self.binL[i])))
                        self.bis.append(temp)
                        self.I.append(i)
                        self.J.append(j)
                        self.K.append(k)

        self.bis = np.asarray(self.bis)
        self.I = np.asarray(self.I)
        self.J = np.asarray(self.J)
        self.K = np.asarray(self.K)
        self.trip_count = np.asarray(self.trip_count)

        return self.bis, self.I, self.J, self.K, self.trip_count

    wig.wig_temp_free()
    wig.wig_table_free()