Example #1
0
    def checkSplit(self):

        outSet = self._getExtraPath('last_classes.xmd')

        self.listNameImgs = []
        self.listNumImgs = []
        self.listRefImgs = []

        metadataItem = md.MetaData(outSet)
        for item in metadataItem:
            nameImg = metadataItem.getValue(md.MDL_IMAGE, item)
            self.listNameImgs.append(nameImg)
            numImgs = metadataItem.getValue(md.MDL_CLASS_COUNT, item)
            self.listNumImgs.append(numImgs)
            refImg = metadataItem.getValue(md.MDL_REF, item)
            self.listRefImgs.append(refImg)

        i = 0
        auxList = sorted(self.listNumImgs, reverse=True)
        while i < len(self.listNumImgs):

            if len(self.listNumImgs) < self.numClasses.get(
            ):  #inside the while
                # just in case we lose some class we want to allow one more
                # split
                if auxList[i] < (1.75 * self.threshold.get()):
                    i += 1
                    continue

                maxValue = auxList[i]
                maxPos = self.listNumImgs.index(maxValue)

                self.listNumImgs[maxPos] = -1
                bestRef = self.listRefImgs[maxPos]

                outputMd = self._getExtraPath('dataClass%06d.xmd' % bestRef)
                self.splitStep(outputMd)

                i = 0
                outSet = self._getExtraPath('split_last_classes.xmd')

                self.listNameImgs = []
                self.listNumImgs = []
                self.listRefImgs = []

                metadataItem = md.MetaData(outSet)
                for item in metadataItem:
                    nameImg = metadataItem.getValue(md.MDL_IMAGE, item)
                    self.listNameImgs.append(nameImg)
                    numImgs = metadataItem.getValue(md.MDL_CLASS_COUNT, item)
                    self.listNumImgs.append(numImgs)
                    refImg = metadataItem.getValue(md.MDL_REF, item)
                    self.listRefImgs.append(refImg)

                copy(outSet, self._getExtraPath('last_classes.xmd'))
                auxList = sorted(self.listNumImgs, reverse=True)
                i = 0

            else:
                break
Example #2
0
    def createOutputStep(self):
        inputMovies = self.inputMovies.get()
        particleSet = self._createSetOfMovieParticles()
        particleSet.copyInfo(inputMovies)

        # Create a folder to store the resulting micrographs

        #         particleFolder = self._getPath('particles')
        #         makePath(particleFolder)
        mData = md.MetaData()
        mdAll = md.MetaData()

        self._micNameDict = {}

        for movie in inputMovies:
            self._micNameDict[movie.getObjId()] = movie.getMicName()
            movieName = self._getMovieName(movie)
            movieStk = movieName.replace('.mrc', '.stk')
            movieMdFile = movieName.replace('.mrc', '.xmd')

            # Store particle stack and metadata files in final particles folder
            if os.path.exists(movieStk):
                mData.read(movieMdFile)
                mdAll.unionAll(mData)

        particleMd = self._getPath('movie_particles.xmd')
        mdAll.addItemId()
        mdAll.write(particleMd)
        readSetOfMovieParticles(particleMd,
                                particleSet,
                                removeDisabled=False,
                                postprocessImageRow=self._postprocessImageRow)

        self._defineOutputs(outputParticles=particleSet)
        self._defineSourceRelation(self.inputMovies, particleSet)
Example #3
0
    def evaluationStep(self):
        noOfLevRuns = self._getLevRuns(self._level)
        iters = self.numberOfIterations.get()
        self._newClass = 0
        self._clsDict = {}
        outModel = self._getFileName('outputModel', lev=self._level)
        outStar = self._getFileName('outputData', lev=self._level)
        mdInput = md.MetaData()
        outMd = md.MetaData()

        for rLev in range(1, noOfLevRuns + 1):
            rLevId = self._getRunLevId(self._level, rLev)
            self._lastCls = None
            mdModel = self._getFileName('model',
                                        iter=iters,
                                        lev=self._level,
                                        rLev=rLev)
            print('Filename model star: %s' % mdModel)
            self._mergeDataStar(outStar, mdInput, iters, rLev)
            self._mergeModelStar(outMd, mdModel, rLev)

            self._doneList.append(rLevId)

        outMd.write('model_classes@' + outModel)
        mdInput.write(outStar)

        print('Finishing evaluation step')
 def joinSetOfParticlesStep(self, mode):
     #Create images.xmd metadata joining from different .stk
     fnImages = self._getExtraPath("particles_%s.xmd" % mode)
     imgsXmd = MD.MetaData()
     for i in range(len(self.inputCoordinatesTrue)):
         posFiles = glob(
             self._getExtraPath(
                 self.CONSENSUS_COOR_PATH_TEMPLATE % (mode, i), '*.pos'))
         for posFn in posFiles:
             xmdFn = self._getExtraPath(
                 self.CONSENSUS_PARTS_PATH_TEMPLATE % (mode, i),
                 pwutils.replaceBaseExt(posFn, "xmd"))
             if os.path.exists(xmdFn):
                 mdFn = MD.MetaData(xmdFn)
                 mdPos = MD.MetaData('particles@%s' % posFn)
                 mdPos.merge(mdFn)
                 imgsXmd.unionAll(mdPos)
             else:
                 self.warning(
                     "The coord file %s wasn't used for extraction! " %
                     os.path.basename(posFn))
                 self.warning(
                     "Maybe you are extracting over a subset of micrographs"
                 )
     imgsXmd.write(fnImages)
Example #5
0
    def _fillClasses(self, outputClasses):
        """ Create the SetOfClasses2D """
        inputSet = self.inputClasses.get().getImages()
        myRep = md.MetaData('classes@' +
                            self._getExtraPath('final_classes.xmd'))

        for row in md.iterRows(myRep):
            fn = row.getValue(md.MDL_IMAGE)
            rep = Particle(fn)
            repId = row.getObjId()
            newClass = Class2D(objId=repId)
            newClass.setAlignment2D()
            newClass.copyInfo(inputSet)
            newClass.setAcquisition(inputSet.getAcquisition())
            newClass.setRepresentative(rep)
            outputClasses.append(newClass)

        i = 1
        mdBlocks = md.getBlocksInMetaDataFile(
            self._getExtraPath('final_classes.xmd'))
        for block in mdBlocks:
            if block.startswith('class00'):
                mdClass = md.MetaData(block + "@" +
                                      self._getExtraPath('final_classes.xmd'))
                imgClassId = i
                newClass = outputClasses[imgClassId]
                newClass.enableAppend()
                for row in md.iterRows(mdClass):
                    part = rowToParticle(row)
                    newClass.append(part)
                i += 1
                newClass.setAlignment2D()
                outputClasses.update(newClass)
Example #6
0
def splitInCTFGroups(imgStar, defocusRange=1000, numParticles=1):
    """ Add a new colunm in the image star to separate the particles into ctf groups """
    mdAll = md.MetaData(imgStar)
    mdAll.sort(md.RLN_CTF_DEFOCUSU)

    focusGroup = 1
    counter = 0
    oldDefocusU = mdAll.getValue(md.RLN_CTF_DEFOCUSU, mdAll.firstObject())
    groupName = '%s_%06d_%05d' % ('ctfgroup', oldDefocusU, focusGroup)
    for objId in mdAll:
        counter = counter + 1
        defocusU = mdAll.getValue(md.RLN_CTF_DEFOCUSU, objId)
        if counter < numParticles:
            pass
        else:
            if (defocusU - oldDefocusU) > defocusRange:
                focusGroup = focusGroup + 1
                oldDefocusU = defocusU
                groupName = '%s_%06d_%05d' % ('ctfgroup', oldDefocusU,
                                              focusGroup)
                counter = 0
        mdAll.setValue(md.RLN_MLMODEL_GROUP_NAME, groupName, objId)

    mdAll.write(imgStar)
    mdCount = md.MetaData()
    mdCount.aggregate(mdAll, md.AGGR_COUNT, md.RLN_MLMODEL_GROUP_NAME,
                      md.RLN_MLMODEL_GROUP_NAME, md.MDL_COUNT)
    print "number of particles per group: ", mdCount
    def evaluateSingleMicrograph(self, micFn, micDir):
        mdCTFparam = xmipp.MetaData(
            self._getFileName('ctfparam', micDir=micDir))
        ctfDownFactor = mdCTFparam.getValue(xmipp.MDL_CTF_DOWNSAMPLE_PERFORMED,
                                            mdCTFparam.firstObject())

        mdEval = md.MetaData()
        id = mdEval.addObject()

        # Check what happen with movies
        #             if md.MDL_TYPE == md.MDL_MICROGRAPH_MOVIE:
        #                 mdEval.setValue(md.MDL_MICROGRAPH_MOVIE, micFn, id)
        #                 mdEval.setValue(md.MDL_MICROGRAPH,('%05d@%s'%(1, micFn)), id)
        #             else:
        mdEval.setValue(md.MDL_MICROGRAPH, micFn, id)

        mdEval.setValue(md.MDL_PSD, str(self._getFileName('psd',
                                                          micDir=micDir)), id)
        mdEval.setValue(md.MDL_PSD_ENHANCED,
                        str(self._getFileName('enhanced_psd', micDir=micDir)),
                        id)
        mdEval.setValue(md.MDL_CTF_MODEL,
                        str(self._getFileName('ctfparam', micDir=micDir)), id)
        mdEval.setValue(
            md.MDL_IMAGE1,
            str(self._getFileName('ctfmodel_quadrant', micDir=micDir)), id)
        mdEval.setValue(
            md.MDL_IMAGE2,
            str(self._getFileName('ctfmodel_halfplane', micDir=micDir)), id)
        mdEval.setValue(md.MDL_CTF_DOWNSAMPLE_PERFORMED, float(ctfDownFactor),
                        id)
        fnEval = self._getFileName('ctf', micDir=micDir)
        mdEval.write(fnEval)

        # Evaluate if estimated ctf is good enough
        # self.runJob("xmipp_ctf_sort_psds","-i %s --downsampling %f"%(fnEval,ctfDownFactor))
        try:
            self.runJob("xmipp_ctf_sort_psds", "-i %s" % (fnEval))
        except Exception:
            pass
#             print >> sys.stderr, "xmipp_ctf_sort_psds has been Failed!"
#             raise ex

# Check if it is a good micrograph
        fnRejected = self._getTmpPath(basename(micFn + "_rejected.xmd"))
        self.runJob(
            "xmipp_metadata_utilities", '-i %s --query select "%s" -o %s' %
            (fnEval, self._criterion, fnRejected))

        retval = True
        if not isMdEmpty(fnRejected):
            mdCTF = md.MetaData(fnEval)
            mdCTF.setValue(md.MDL_ENABLED, -1, mdCTF.firstObject())
            mdCTF.write(fnEval)
            retval = False
        cleanPath(fnRejected)
        return retval
Example #8
0
 def _plotSSNR(self, a, fn, label):
     mdOut = md.MetaData(fn)
     mdSSNR = md.MetaData()
     # only cross by 1 is important
     mdSSNR.importObjects(mdOut, md.MDValueGT(md.RLN_MLMODEL_DATA_VS_PRIOR_REF, 0.9))
     mdSSNR.operate("rlnSsnrMap=log(rlnSsnrMap)")
     resolution_inv = [mdSSNR.getValue(md.RLN_RESOLUTION, id) for id in mdSSNR]
     frc = [mdSSNR.getValue(md.RLN_MLMODEL_DATA_VS_PRIOR_REF, id) for id in mdSSNR]
     a.plot(resolution_inv, frc, label=label)
     a.xaxis.set_major_formatter(self._plotFormatter)
    def createOutputStep(self):

        outputVols = self._createSetOfVolumes()

        for i, vol in enumerate(self._iterInputVols()):

            volDir = self._getVolDir(i + 1)
            volume = vol.clone()
            volPrefix = 'vol%03d_' % (i + 1)

            m_pruned = md.MetaData()
            m_pruned.read(volDir + '/pruned_particles_alignability.xmd')
            prunedMd = self._getExtraPath(volPrefix +
                                          'pruned_particles_alignability.xmd')

            moveFile(join(volDir, 'pruned_particles_alignability.xmd'),
                     prunedMd)
            m_volScore = md.MetaData()
            m_volScore.read(volDir + '/validationAlignability.xmd')
            validationMd = self._getExtraPath(volPrefix +
                                              'validation_alignability.xmd')
            moveFile(join(volDir, 'validationAlignability.xmd'), validationMd)

            imgSet = self.inputParticles.get()

            outImgSet = self._createSetOfParticles(volPrefix)
            outImgSet.copyInfo(imgSet)

            outImgSet.copyItems(imgSet,
                                updateItemCallback=self._setWeight,
                                itemDataIterator=md.iterRows(
                                    prunedMd, sortByLabel=md.MDL_ITEM_ID))

            mdValidatoin = md.getFirstRow(validationMd)

            weight = mdValidatoin.getValue(
                md.MDL_WEIGHT_PRECISION_ALIGNABILITY)
            volume.weightAlignabilityPrecision = Float(weight)

            weight = mdValidatoin.getValue(md.MDL_WEIGHT_ACCURACY_ALIGNABILITY)
            volume.weightAlignabilityAccuracy = Float(weight)

            weight = mdValidatoin.getValue(md.MDL_WEIGHT_PRECISION_MIRROR)
            volume.weightMirror = Float(weight)

            volume.cleanObjId(
            )  # clean objects id to assign new ones inside the set
            outputVols.append(volume)
            self._defineOutputs(outputParticles=outImgSet)

            self.createPlot2D(volPrefix, m_pruned)

        outputVols.setSamplingRate(volume.getSamplingRate())
        self._defineOutputs(outputVolumes=outputVols)
Example #10
0
    def generateMdForClassification(self, classesOut):

        listNameImgs = self.listNameImgs
        listNumImgs = self.listNumImgs

        count = 1
        # Construct the new classes with the renumerated old classes
        mdNewClasses = md.MetaData()
        for i in range(len(listNumImgs)):
            if listNumImgs[i] != -1:
                name = listNameImgs[i]
                fn = name[name.find('@') + 1:-4] + '.xmd'
                numRef = int(name[0:6])

                mdClass = md.MetaData("classes@" + fn)
                for row in iterRows(mdClass):
                    if mdClass.getValue(md.MDL_REF, row.getObjId()) == numRef:
                        row.setValue(md.MDL_REF, count)
                        row.addToMd(mdNewClasses)
                count += 1

        # Add the two new classes to the list of renumerated classes
        mdClass = md.MetaData("classes@" + classesOut)
        rows = iterRows(mdClass)
        for row in rows:
            row.setValue(md.MDL_REF, count)
            row.addToMd(mdNewClasses)
            count += 1
        mdNewClasses.write(
            'classes@' + self._getExtraPath('split_last_classes.xmd'),
            MD_APPEND)

        # Generate the intermediate images and the blocks of the intermediate
        # classes for the unchanged classes
        count = 1
        for i in range(len(listNumImgs)):
            if listNumImgs[i] != -1:
                # Read the list of images in this class
                mdImgsInClass = md.MetaData(
                    self._getExtraPath('dataClass%06d.xmd' % (i + 1)))
                mdImgsInClass.fillConstant(md.MDL_REF, count)
                mdImgsInClass.write(
                    self._getExtraPath('dataClass%06d.xmd' % count))
                count += 1

        # Add the two new classes
        for newRef in range(0, 2):
            mdImgsInClass = md.MetaData('class%06d_images@%s' %
                                        (newRef + 1, classesOut))
            mdImgsInClass.fillConstant(md.MDL_REF, count)
            mdImgsInClass.write(self._getExtraPath('dataClass%06d.xmd' %
                                                   count))
            count += 1
    def _createOutputStep(self):
        ctfSet = self._createSetOfCTF()
        inputMics = self.inputMicrographs.get()
        ctfSet.setMicrographs(inputMics)
        defocusList = []
        if self.doAutomaticRejection:
            fn = self._getPath("micrographs.xmd")
        else:
            fn = self._getPath("ctfs_selection.xmd")
        mdFn = md.MetaData(fn)
        mdAux = md.MetaData()

        for _, micDir, mic in self._iterMicrographs():
            if exists(self._getFileName('ctfparam', micDir=micDir)):
                mdCTF = md.MetaData(
                    self._getFileName('ctfparam', micDir=micDir))
                mdQuality = md.MetaData(self._getFileName('ctf',
                                                          micDir=micDir))
                mdCTF.setValue(
                    xmipp.MDL_CTF_CRIT_NONASTIGMATICVALIDITY,
                    mdQuality.getValue(
                        xmipp.MDL_CTF_CRIT_NONASTIGMATICVALIDITY,
                        mdQuality.firstObject()), mdCTF.firstObject())
                mdCTF.setValue(
                    xmipp.MDL_CTF_CRIT_FIRSTMINIMUM_FIRSTZERO_DIFF_RATIO,
                    mdQuality.getValue(
                        xmipp.MDL_CTF_CRIT_FIRSTMINIMUM_FIRSTZERO_DIFF_RATIO,
                        mdQuality.firstObject()), mdCTF.firstObject())
            else:
                fnError = self._getFileName('ctfErrorParam', micDir=micDir)
                if not exists(fnError):
                    self._createErrorCtfParam(micDir)
                mdCTF = md.MetaData(fnError)
            mdAux.importObjects(
                mdFn, md.MDValueEQ(md.MDL_MICROGRAPH_ID, long(mic.getObjId())))
            mdAux.merge(mdCTF)

            mic.setSamplingRate(mdCTF.getValue(md.MDL_CTF_SAMPLING_RATE, 1))

            ctfModel = mdToCTFModel(mdAux, mic)
            self._setPsdFiles(ctfModel, micDir)
            ctfSet.append(ctfModel)

            # save the values of defocus for each micrograph in a list
            defocusList.append(ctfModel.getDefocusU())
            defocusList.append(ctfModel.getDefocusV())

        self._defineOutputs(outputCTF=ctfSet)
        self._defineCtfRelation(inputMics, ctfSet)
        self._defocusMaxMin(defocusList)
Example #12
0
    def createInputMd(self, vols):
        fnVols = self._getExtraPath('input_volumes.xmd')
        if self.copyAlignment:
            alignType = vols.getAlignment()
        else:
            alignType = ALIGN_NONE

        writeSetOfVolumes(vols, fnVols,
                          postprocessImageRow=self._postprocessVolumeRow,
                          alignType=alignType)
        if not vols.hasAlignment() or not self.copyAlignment:
            mdFn = md.MetaData(fnVols)
            mdFn.fillConstant(md.MDL_ANGLE_ROT, 0.)
            mdFn.fillConstant(md.MDL_ANGLE_TILT, 0.)
            mdFn.fillConstant(md.MDL_ANGLE_PSI, 0.)
            mdFn.fillConstant(md.MDL_SHIFT_X, 0.)
            mdFn.fillConstant(md.MDL_SHIFT_Y, 0.)
            mdFn.fillConstant(md.MDL_SHIFT_Z, 0.)
            mdFn.write(fnVols, md.MD_OVERWRITE)

        # set missing angles
        missType = ['wedge_y', 'wedge_x', 'pyramid', 'cone']
        missNum = self.missingDataType.get()
        missAng = self.missingAng.get()
        missDataFn = self._getExtraPath('wedges.xmd')
        missAngValues = str(missAng).strip().split()
        thetaY0, thetaYF, thetaX0, thetaXF = 0, 0, 0, 0
        mdFn = md.MetaData()

        if missNum == MISSING_WEDGE_X:
            thetaX0, thetaXF = missAngValues
        elif missNum == MISSING_WEDGE_Y:
            thetaY0, thetaYF = missAngValues
        elif missNum == MISSING_PYRAMID:
            thetaY0, thetaYF, thetaX0, thetaXF = missAngValues
        else:  # MISSING_CONE
            thetaY0 = missAngValues[0]

        for i in range(1, vols.getSize() + 1):
            row = md.Row()
            row.setValue(md.MDL_MISSINGREGION_NR, missNum + 1)
            row.setValue(md.MDL_MISSINGREGION_TYPE, missType[missNum])
            row.setValue(md.MDL_MISSINGREGION_THX0, float(thetaX0))
            row.setValue(md.MDL_MISSINGREGION_THXF, float(thetaXF))
            row.setValue(md.MDL_MISSINGREGION_THY0, float(thetaY0))
            row.setValue(md.MDL_MISSINGREGION_THYF, float(thetaYF))
            row.addToMd(mdFn)

        mdFn.write(missDataFn, md.MD_APPEND)
Example #13
0
    def analyzeOutOfCores(self, subset):
        """ Analyze which images are out of cores """
        levelMdFiles = self._getAllLevelMdFiles(subset)

        for fn in levelMdFiles:
            mdAll = md.MetaData()
            blocks = md.getBlocksInMetaDataFile(fn)
            fnDir = dirname(fn)
            # Gather all images in block
            for block in blocks:
                if block.startswith('class0'):
                    mdClass = md.MetaData(block + "@" + fn)
                    mdAll.unionAll(mdClass)
            if mdAll.size() > 0:
                # Compute difference to images
                fnSubset = join(fnDir, "images%s.xmd" % subset)
                mdAll.write(fnSubset)
                fnOutOfSubset = join(fnDir, "imagesOut.xmd")

                inputMd = self._getFileName('input_particles')

                args = "-i %s --set subtraction %s -o %s" % (inputMd, fnSubset,
                                                             fnOutOfSubset)

                self.runJob("xmipp_metadata_utilities",
                            args,
                            numberOfMpi=1,
                            numberOfThreads=1)

                # Remove disabled and intermediate files
                mdClass = md.MetaData(fnOutOfSubset)
                mdClass.removeDisabled()
                fnRejected = "images_rejected@" + fn
                mdClass.write(fnRejected, md.MD_APPEND)
                cleanPath(fnOutOfSubset)
                cleanPath(fnSubset)

                # If enough images, make a small summary
                if mdClass.size() > 100:
                    from math import ceil
                    fnRejectedDir = join(fnDir, "rejected%s" % subset)
                    makePath(fnRejectedDir)
                    Nclasses = int(ceil(mdClass.size() / 300))
                    self.runJob(
                        "xmipp_classify_CL2D",
                        "-i %s --nref0 1 --nref %d --iter 5 --distance "
                        "correlation --classicalMultiref "
                        "--classifyAllImages --odir %s" %
                        (fnRejected, Nclasses, fnRejectedDir))
Example #14
0
    def _showPMax(self, paramName=None):
        labels = [md.RLN_MLMODEL_AVE_PMAX, md.RLN_PARTICLE_PMAX]

        mdIters = md.MetaData()
        iterations = range(self.firstIter, self.lastIter+1)

        # range (firstIter, # self._visualizeLastIteration+1):
        # #always list all iteration
        for it in iterations:
            objId = mdIters.addObject()
            mdIters.setValue(md.MDL_ITER, it, objId)
            for i, prefix in enumerate(self.protocol.PREFIXES):
                filename = self.protocol._getFileName(prefix + 'model', iter=it)
                fn = 'model_general@' + filename
                mdModel = md.RowMetaData(fn)
                pmax = mdModel.getValue(md.RLN_MLMODEL_AVE_PMAX)
                mdIters.setValue(labels[i], pmax, objId)
        fn = self.protocol._getFileName('all_avgPmax_xmipp')
        mdIters.write(fn)

        colors = ['g', 'b']

        xplotter = VolSelPlotter()
        xplotter.createSubPlot("Avg PMax per Iterations", "Iterations", "Avg PMax")

        for label, color in zip(labels, colors):
            xplotter.plotMd(mdIters, md.MDL_ITER, label, color)

        if len(self.protocol.PREFIXES) > 1:
            xplotter.showLegend(self.protocol.PREFIXES)

        return [self.createView(fn), xplotter]
Example #15
0
    def _mergeDataStar(self, outStar, mdInput, iter, rLev):
        imgStar = self._getFileName('data',
                                    iter=iter,
                                    lev=self._level,
                                    rLev=rLev)
        mdData = md.MetaData(imgStar)

        print("reading %s and begin the loop" % imgStar)
        for row in md.iterRows(mdData, sortByLabel=md.RLN_PARTICLE_CLASS):
            clsPart = row.getValue(md.RLN_PARTICLE_CLASS)
            if clsPart != self._lastCls:
                self._newClass += 1
                self._clsDict['%s.%s' % (rLev, clsPart)] = self._newClass
                self._lastCls = clsPart
                # write symlink to new Maps
                relionFn = self._getFileName('relionMap',
                                             lev=self._level,
                                             iter=self._getnumberOfIters(),
                                             ref3d=clsPart,
                                             rLev=rLev)
                newFn = self._getFileName('map',
                                          lev=self._level,
                                          rLev=self._newClass)
                print(('link from %s to %s' % (relionFn, newFn)))
                createLink(relionFn, newFn)

            row.setValue(md.RLN_PARTICLE_CLASS, self._newClass)
            row.addToMd(mdInput)
        print("writing %s and ending the loop" % outStar)
    def createOutputStep(self):
        outputVols = self._createSetOfVolumes()
        imgSet = self.inputParticles.get()
        for i, vol in enumerate(self._iterInputVols()):
            volume = vol.clone()
            volDir = self._getVolDir(i + 1)
            volPrefix = 'vol%03d_' % (i + 1)
            validationMd = self._getExtraPath(volPrefix + 'validation.xmd')
            moveFile(join(volDir, 'validation.xmd'), validationMd)
            clusterMd = self._getExtraPath(volPrefix +
                                           'clusteringTendency.xmd')
            moveFile(join(volDir, 'clusteringTendency.xmd'), clusterMd)

            outImgSet = self._createSetOfParticles(volPrefix)

            outImgSet.copyInfo(imgSet)

            outImgSet.copyItems(imgSet,
                                updateItemCallback=self._setWeight,
                                itemDataIterator=md.iterRows(
                                    clusterMd, sortByLabel=md.MDL_ITEM_ID))

            mdValidatoin = md.MetaData(validationMd)
            weight = mdValidatoin.getValue(md.MDL_WEIGHT,
                                           mdValidatoin.firstObject())
            volume.weight = Float(weight)
            volume.clusterMd = String(clusterMd)
            volume.cleanObjId(
            )  # clean objects id to assign new ones inside the set
            outputVols.append(volume)
            self._defineOutputs(outputParticles=outImgSet)

        outputVols.setSamplingRate(volume.getSamplingRate())
        self._defineOutputs(outputVolumes=outputVols)
Example #17
0
def writeSetOfParticles(imgSet, starFile, outputDir, **kwargs):
    """ This function will write a SetOfImages as Relion meta
    Params:
        imgSet: the SetOfImages instance.
        starFile: the filename where to write the meta
        filesMapping: this dict will help when there is need to replace images names
    """
    filesDict = convertBinaryFiles(imgSet, outputDir)
    kwargs['filesDict'] = filesDict
    partMd = md.MetaData()
    setOfImagesToMd(imgSet, partMd, particleToRow, **kwargs)

    if kwargs.get('fillMagnification', False):
        pixelSize = imgSet.getSamplingRate()
        mag = imgSet.getAcquisition().getMagnification()
        detectorPxSize = mag * pixelSize / 10000

        partMd.fillConstant(md.RLN_CTF_MAGNIFICATION, mag)
        partMd.fillConstant(md.RLN_CTF_DETECTOR_PIXEL_SIZE, detectorPxSize)
    else:
        # Remove Magnification from metadata to avoid wrong values of pixel size.
        # In Relion if Magnification and DetectorPixelSize are in metadata,
        # pixel size is ignored in the command line.
        partMd.removeLabel(md.RLN_CTF_MAGNIFICATION)

    blockName = kwargs.get('blockName', 'Particles')
    partMd.write('%s@%s' % (blockName, starFile))
Example #18
0
    def _createClasses(self, partSet):
        self._classesDict = {}  # store classes info, indexed by class id
        pathDict = {}

        self.protocol.info('Loading classes info from: %s' %
                           self._modelStarFile)
        modelMd = md.MetaData('model_classes@' + self._modelStarFile)
        for classNumber, objId in enumerate(modelMd):
            row = md.Row()
            row.readFromMd(modelMd, objId)
            index, fn = relionToLocation(row.getValue('rlnReferenceImage'))

            if fn in pathDict:
                newFn = pathDict.get(fn)
            else:
                clsPath = findRootFrom(self._modelStarFile, fn)
                if clsPath is None:
                    newFn = fn
                else:
                    newFn = self.protocol._getExtraPath(os.path.basename(fn))
                    self.copyOrLink(os.path.join(clsPath, fn), newFn)
                pathDict[fn] = newFn

            self._classesDict[classNumber + 1] = (index, newFn, row)

        clsSet = self._classesFunc(partSet)
        clsSet.classifyItems(updateClassCallback=self._updateClass)

        self.protocol._defineOutputs(outputClasses=clsSet)
        self.protocol._defineSourceRelation(partSet, clsSet)
Example #19
0
    def _writeXmippPosFile(self, movieId, movieName, coordinatesName, shiftX,
                           shiftY):
        """ Create an Xmipp coordinates files to be extracted
        from the frames of the movie.
        """
        ##### import em abre una nueva conexion?
        #TODO ROB move this import to the header
        from pyworkflow.em import SetOfCoordinates
        inputCoords = self.inputCoordinates.get()
        coordinates = SetOfCoordinates(filename=inputCoords.getFileName())

        #####coordinates = self.inputCoordinates.get()
        #####micrograph = coordinates.getMicrographs()[movieId]

        ####if micrograph is None:
        #####raise Exception("Micrograph with id %d was not found in SetOfCoordinates!!!" % movieId)

        mData = md.MetaData()
        coordRow = XmippMdRow()

        ####        for coord in coordinates.iterCoordinates(micrograph):
        for coord in coordinates.iterCoordinates(movieId):
            coord.shiftX(int(round(float(shiftX))))
            coord.shiftY(int(round(float(shiftY))))
            coordinateToRow(coord, coordRow)
            coordRow.writeToMd(mData, mData.addObject())

        if mData.isEmpty():
            return False
        else:
            self.info("Writing coordinates metadata: %s, with shifts: %s %s" %
                      (coordinatesName, shiftX, shiftY))
            mData.write('particles@' + coordinatesName)
            return True
Example #20
0
def readSetOfCoordinates(outputDir, partSet, coordSet):
    """This method is used to store an edition of the coordinates obtained by
    localized reconstruction.
    Read from Xmipp .pos files.
    Params:
        outputDir: the directory where the .pos files are.
            It is also expected a file named: config.xmd
            in this directory where the box size can be read.
        micSet: the SetOfMicrographs to associate the .pos, which
            name should be the same of the micrographs.
        coordSet: the SetOfCoordinates that will be populated.
    """
    # Read the boxSize from the config.xmd metadata
    configfile = join(outputDir, 'config.xmd')
    if exists(configfile):
        mdFn = md.MetaData('properties@' + join(outputDir, 'config.xmd'))
        boxSize = mdFn.getValue(md.MDL_PICKING_PARTICLE_SIZE,
                                mdFn.firstObject())
        coordSet.setBoxSize(boxSize)
    for part in partSet:
        baseFn = "%06d_at_%s" % (part.getIndex(),
                                 replaceBaseExt(part.getFileName(), 'pos'))
        posFile = join(outputDir, baseFn)
        readCoordinates(part, posFile, coordSet, outputDir)

    coordSet._xmippMd = String(outputDir)
Example #21
0
    def createOutputStep(self):

        if not self.realignMovieFrames:
            imgSet = self._getInputParticles()
            vol = Volume()
            vol.setFileName(self._getExtraPath('relion_class001.mrc'))
            vol.setSamplingRate(imgSet.getSamplingRate())
            half1 = self._getFileName("final_half1_volume", ref3d=1)
            half2 = self._getFileName("final_half2_volume", ref3d=1)
            vol.setHalfMaps([half1, half2])

            outImgSet = self._createSetOfParticles()
            outImgSet.copyInfo(imgSet)
            self._fillDataFromIter(outImgSet, self._lastIter())

            self._defineOutputs(outputVolume=vol)
            self._defineSourceRelation(self.inputParticles, vol)
            self._defineOutputs(outputParticles=outImgSet)
            self._defineTransformRelation(self.inputParticles, outImgSet)

            fsc = FSC(objLabel=self.getRunName())
            blockName = 'model_class_%d@' % 1
            fn = blockName + self._getExtraPath("relion_model.star")
            mData = md.MetaData(fn)
            fsc.loadFromMd(mData, md.RLN_RESOLUTION,
                           md.RLN_MLMODEL_FSC_HALVES_REF)
            self._defineOutputs(outputFSC=fsc)
            self._defineSourceRelation(vol, fsc)

        else:
            movieSet = self.inputMovieParticles.get()
            if self.movieIncludeRotSearch:
                vol = Volume()
                vol.setFileName(self._getExtraPath('relion_class001.mrc'))
                vol.setSamplingRate(movieSet.getSamplingRate())
                half1 = self._getFileName("final_half1_volume", ref3d=1)
                half2 = self._getFileName("final_half2_volume", ref3d=1)
                vol.setHalfMaps([half1, half2])

                self._defineOutputs(outputVolume=vol)
                self._defineSourceRelation(self.inputParticles, vol)
                self._defineSourceRelation(self.inputMovieParticles, vol)

            fnOut = self._getFileName('dataFinal')
            outMovieSet = self._createSetOfMovieParticles()
            outMovieSet.copyInfo(movieSet)
            outMovieSet.setAlignmentProj()
            # not using copyItems since input movie particle
            # set is missing a lot of metadata (CTF, micName etc.)
            # that was created in convertInputStep
            readSetOfParticles(fnOut,
                               outMovieSet,
                               alignType=ALIGN_PROJ,
                               extraLabels=MOVIE_EXTRA_LABELS,
                               postprocessImageRow=self._updateParticle)

            self._defineOutputs(outputParticles=outMovieSet)
            self._defineTransformRelation(self.inputParticles, outMovieSet)
            self._defineTransformRelation(self.inputMovieParticles,
                                          outMovieSet)
Example #22
0
    def _writeXmippPosFile(self, movie, coordinatesName, shiftX, shiftY):
        """ Create an Xmipp coordinates files to be extracted
        from the frames of the movie.
        """
        coordSet = self.inputCoordinates.get()

        # to support multiple access to db
        coordToIter = SetOfCoordinates()
        coordToIter.copy(coordSet)
        coordSet.close()

        mData = md.MetaData()
        coordRow = XmippMdRow()

        for coord in coordToIter.iterCoordinates(movie.getObjId()):
            coord.shiftX(int(round(float(shiftX))))
            coord.shiftY(int(round(float(shiftY))))
            coordinateToRow(coord, coordRow)
            coordRow.writeToMd(mData, mData.addObject())
        coordToIter.close()

        if mData.isEmpty():
            return False
        else:
            self.info("Writing coordinates metadata: %s, with shifts: %s %s" %
                      (coordinatesName, shiftX, shiftY))
            mData.write('particles@' + coordinatesName)
            return True
Example #23
0
    def createOutputStep(self):

        if not self.realignMovieFrames:
            imgSet = self._getInputParticles()
            vol = Volume()
            vol.setFileName(self._getExtraPath('relion_class001.mrc'))
            vol.setSamplingRate(imgSet.getSamplingRate())
            half1 = self._getFileName("final_half1_volume", ref3d=1)
            half2 = self._getFileName("final_half2_volume", ref3d=1)
            vol.setHalfMaps([half1, half2])

            outImgSet = self._createSetOfParticles()
            outImgSet.copyInfo(imgSet)
            self._fillDataFromIter(outImgSet, self._lastIter())

            self._defineOutputs(outputVolume=vol)
            self._defineSourceRelation(self.inputParticles, vol)
            self._defineOutputs(outputParticles=outImgSet)
            self._defineTransformRelation(self.inputParticles, outImgSet)

            fsc = FSC(objLabel=self.getRunName())
            blockName = 'model_class_%d@' % 1
            fn = blockName + self._getExtraPath("relion_model.star")
            mData = md.MetaData(fn)
            fsc.loadFromMd(mData, md.RLN_RESOLUTION,
                           md.RLN_MLMODEL_FSC_HALVES_REF)
            self._defineOutputs(outputFSC=fsc)
            self._defineSourceRelation(vol, fsc)

        else:
            pass
    def checkContinueClassification(self, level, iter):

        diff=0
        i=0
        metadata = md.MetaData(self._getExtraPath(join('level%03d' % level,
                                'general_images_level%03d' % level + '.xmd')))

        for item in metadata:
            refImg = metadata.getValue(md.MDL_REF, item)
            nameImg = metadata.getValue(md.MDL_IMAGE, item)
            if iter==0:
                self.listContinueClass.append(nameImg)
                self.listContinueClass.append(refImg)
            else:
                if nameImg in self.listContinueClass:
                    idx = self.listContinueClass.index(nameImg) + 1
                    if refImg!=self.listContinueClass[idx]:
                        diff+=1
                    self.listContinueClass[idx]=refImg
                else:
                    diff += 1
                    self.listContinueClass.append(nameImg)
                    self.listContinueClass.append(refImg)
            i+=1
        num=(diff*100/i)
        if num<self.percentStopClassify and iter>0:
            return True
        else:
            return False
Example #25
0
    def createAngDistributionSqlite(self, sqliteFn, numberOfParticles,
                                    itemDataIterator):
        import pyworkflow.em.metadata as md
        if not os.path.exists(sqliteFn):
            # List of list of 3 elements containing angleTilt, anglePsi, weight
            projectionList = []

            def getCloseProjection(angleRot, angleTilt):
                """ Get an existing projection close to angleRot, angleTilt.
                Return None if not found close enough.
                """
                for projection in projectionList:
                    if (abs(projection[0] - angleRot) <= 0.5
                            and abs(projection[1] - angleTilt) <= 0.5):
                        return projection
                return None

            weight = 1. / numberOfParticles

            for angleRot, angleTilt in itemDataIterator:
                projection = getCloseProjection(angleRot, angleTilt)
                if projection is None:
                    projectionList.append([angleRot, angleTilt, weight])
                else:
                    projection[2] = projection[2] + weight

            mdProj = md.MetaData()

            for projection in projectionList:
                mdRow = md.Row()
                mdRow.setValue(md.MDL_ANGLE_ROT, projection[0])
                mdRow.setValue(md.MDL_ANGLE_TILT, projection[1])
                mdRow.setValue(md.MDL_WEIGHT, projection[2])
                mdRow.writeToMd(mdProj, mdProj.addObject())
            mdProj.write(sqliteFn)
Example #26
0
    def performNmaStep(self, atomsFn, modesFn):
        sampling = self.inputParticles.get().getSamplingRate()
        discreteAngularSampling = self.discreteAngularSampling.get()
        trustRegionScale = self.trustRegionScale.get()
        odir = self._getTmpPath()
        imgFn = self.imgsFn

        args = "-i %(imgFn)s --pdb %(atomsFn)s --modes %(modesFn)s --sampling_rate %(sampling)f "
        args += "--discrAngStep %(discreteAngularSampling)f --odir %(odir)s --centerPDB "
        args += "--trustradius_scale %(trustRegionScale)d --resume "

        if self.getInputPdb().getPseudoAtoms():
            args += "--fixed_Gaussian "

        if self.alignmentMethod == NMA_ALIGNMENT_PROJ:
            args += "--projMatch "

        self.runJob("xmipp_nma_alignment", args % locals())

        cleanPath(self._getPath('nmaTodo.xmd'))

        inputSet = self.inputParticles.get()
        mdImgs = md.MetaData(self.imgsFn)
        for objId in mdImgs:
            imgPath = mdImgs.getValue(md.MDL_IMAGE, objId)
            index, fn = xmippToLocation(imgPath)
            # Conside the index is the id in the input set
            particle = inputSet[index]
            mdImgs.setValue(md.MDL_IMAGE, getImageLocation(particle), objId)
            mdImgs.setValue(md.MDL_ITEM_ID, long(particle.getObjId()), objId)
        mdImgs.write(self.imgsFn)
def createPlot(inputStar, classes):

    inputMd = md.MetaData(inputStar)

    if inputMd.containsLabel(md.RLN_PARTICLE_RANDOM_SUBSET):
        splitLabel = md.RLN_PARTICLE_RANDOM_SUBSET
        prefix = 'half'
    else:
        splitLabel = md.RLN_PARTICLE_CLASS
        prefix = 'class'

    projectionListDict = createAngDistribution(inputMd, splitLabel, classes)

    nProj = len(projectionListDict)
    nRows = (nProj + 1) / 2
    nCols = 2 if nProj > 1 else 1

    plotter = RelionPlotter(x=nRows, y=nCols,
                            windowTitle="Angular Distribution")

    for key, projectionList in projectionListDict.iteritems():
        rot = []
        tilt = []
        weight = []
        n = len(projectionList)

        for r, t, w in projectionList:
            rot.append(r)
            tilt.append(t)
            weight.append(w/n) # normalize weights between 0 and 1

        plotter.plotAngularDistribution("%s_%03d" % (prefix, key),
                                       rot, tilt, weight)

    plotter.show(block=True)
    def checkOutput(self, level):

        listAuxString = []
        listAuxNum = []
        listAuxRefs = []

        outSet = self._getExtraPath(join('level%03d' % level,
                                         'intermediate_classes.xmd'))
        metadataItem = md.MetaData(outSet)
        for item in metadataItem:
            nameImg = metadataItem.getValue(md.MDL_IMAGE, item)
            listAuxString.append(nameImg)
            numImgs = metadataItem.getValue(md.MDL_CLASS_COUNT, item)
            listAuxNum.append(numImgs)
            refImg = metadataItem.getValue(md.MDL_REF, item)
            listAuxRefs.append(refImg)

        maxValue = max(listAuxNum)
        maxPos = listAuxNum.index(maxValue)

        listAuxNum[maxPos] = -1
        bestRef = listAuxRefs[maxPos]

        self._params = {'input': 'class%06d_images' % (bestRef) + '@' + outSet,
                        'outputMd': self._getExtraPath(join('level%03d'  %
                                    level,'images_level%03d' % level
                                                            + '_major.xmd'))
                        }
        args = ('-i %(input)s -o %(outputMd)s')
        self.runJob("xmipp_metadata_utilities", args % self._params,
                    numberOfMpi=1)

        return listAuxNum, listAuxString
Example #29
0
def writeSetOfMicrographs(micSet, starFile, **kwargs):
    """ If 'outputDir' is in kwargs, the micrographs are\
    converted or linked in the outputDir.
    """
    micMd = md.MetaData()
    setOfImagesToMd(micSet, micMd, micrographToRow, **kwargs)
    blockName = kwargs.get('blockName', 'Particles')
    micMd.write('%s@%s' % (blockName, starFile))
Example #30
0
 def _newMd(self):
     md0 = md.MetaData()
     n = 5
     xcoor = range(n)
     ycoor = [x * x for x in xcoor]
     for i in range(n):
         self._addRow(md0, '*****@*****.**' % i, xcoor[i], ycoor[i])
     return md0