def test_wavelet_repr(): from pywt._extensions import _pywt wavelet = _pywt.Wavelet('sym8') repr_wavelet = eval(wavelet.__repr__()) assert_(wavelet.__repr__() == repr_wavelet.__repr__())
def __init__(self, _input=None): self._input = _input if _input is None: self.l = None self.level = None else: self.l = len(_input) self.level = _dwt.dwt_max_level(data_len=self.l, filter_len=self.fl) self.fl = _pywt.Wavelet('haar').dec_len self.method = _pywt.MODES.smooth self.wavelet = 'haar' self.ca = [] self.cd = [] self.eng = [] self.twe = [] self.rwe = [] self.we = [] # # Featrure methods # self.wavelet_decompose() # self.total_wavelet_energy() # self.relative_wavelet_energy() # self.wavelet_entropy() pass