Example #1
0
                file.write('{} '.format(str(gate) + '(' + str(angle) + ')') +
                           str(j) + '\n')
            else:
                file.write('{} '.format(str(gate)) + str(j) + ' \n')

        for e in evens:
            file.write('CNOT {0} {1}\n'.format(*e))

        for e in odds:
            file.write('CNOT {0} {1}\n'.format(*e))

    file.write("}")
    file.close()
    return open(file_name).read()


@profile
def execute(nq, rounds):
    src = write_qasm(rounds, nq)
    qpu = xacc.getAccelerator('tnqvm')
    xacc.setOption('tnqvm-verbose', '')
    f = xacc.compileKernel(qpu, src)
    buf = qpu.createBuffer('q', nq)
    qpu.execute(buf, f)


if __name__ == '__main__':
    opts = parse_args(sys.argv[1:])
    xacc.Initialize(['--compiler', 'quil'])
    execute(opts.n, opts.r)
Example #2
0
import pyxacc as xacc

src = """__qpu__ variable(AcceleratorBuffer ab, double ta, double tp, double tq, double h, double J) {
    anneal ta tp tq;
    0 0 h;
    1 1 h;
    0 1 J;
}"""

xacc.Initialize(['--compiler', 'dwave-qmi'])

qpu = xacc.getAccelerator('dwave')
qubits = qpu.createBuffer('qbits')

p = xacc.Program(qpu, src)
p.build()

variable = p.getKernel('variable')

for t in [20., 30.]:
    variable.execute(qubits, [t, 0., 0., 2., 3.])

xacc.Finalize()
Example #3
0
import pyxaccvqe as vqe
import pyxacc as xacc
import numpy as np
from stochopy import Evolutionary
from mpi4py import MPI

# Initialize MPI and XACC
mpi_comm = MPI.COMM_WORLD
mpi_rank = mpi_comm.Get_rank()
xacc.Initialize()
xacc.setOption('n-electrons', '2')

op = vqe.compile("""&FCI NORB=  2,NELEC=  2,MS2= 0,
  ORBSYM=1,5,
  ISYM=0,
 /                         i   a   j   b
  0.6744931033260081E+00   1   1   1   1
  0.6634720448605567E+00   2   2   1   1
  0.6973979494693358E+00   2   2   2   2
  0.1812875358123322E+00   2   1   2   1
 -0.1252477303982147E+01   1   1   0   0
 -0.4759344611440753E+00   2   2   0   0
  0.7137758743754461E+00   0   0   0   0
""")


# Define PSO objective function
def f(params):
    # note 'no-mpi' at the compute energy, hamiltonian term
    # level, but we are using mpi at the higher PSO swarm level
    return vqe.execute(
Example #4
0
def main(argv=None):

   # Store results to this CSV file
   file = open('projectq_out.csv', 'w')
   file.write('theta, Z0_pq, Z0_tnqvm\n') #, Z1, Z0Z1\n')

   # Initialize XACC
   xacc.Initialize()
   
   # Indicate that we want to use the ProjectQ QASM 
   # Compiler/Transpiler
   xacc.setOption('compiler', 'projectq-qasm')
   
   # Get reference to the TNQVM Accelerator
   tnqvm = xacc.getAccelerator('tnqvm')
   
   # Allocate and AcceleratorBuffer
   xacc_qbits = tnqvm.createBuffer('qreg', 2)

   # Loop over H2 state prep variational parameters
   for theta in np.linspace(-np.pi, np.pi, 100):

      # Create a ProjectQ Engine with our CommandPrinter
      output = StringIO.StringIO()
      eng = MainEngine(Simulator(), [XaccCommandPrinter(output)])

      # Allocate some ProjectQ qubits
      qreg = eng.allocate_qureg(2)

      # Run Init State Circuit and Generate the Z0 QubitOperator
      op = Z0Term(qreg, theta)
      eng.flush()
      
      # Get Expectation Value of Z0 operator
      e_pq = eng.backend.get_expectation_value(op, qreg)
      Measure | qreg[0]

      # Get the ProjectQ QASM
      qasm = output.getvalue()
      
      # Generate an XACC Kernel
      xaccKernel = getXACCKernel(qasm, tnqvm)
   
      # Execute, no params since theta has
      # already been input to Z0Term function
      xaccKernel.execute(xacc_qbits, [])
      
      # Get the expectation value
      e_tnqvm = xacc_qbits.getExpectationValueZ()
      
      # Reset the qubits for the next iteration
      xacc_qbits.resetBuffer()
    
      # Store the results to a CSV file
      file.write(str(theta) + ', ' + str(e_pq) + ', ' + str(e_tnqvm) + '\n')
      file.flush()
   
   file.close()

   # Finalize the framework
   xacc.Finalize()