def _test_add_remove(in_name: str, conv_name: str): in1 = px.ops.input(op_name=in_name, shape=[1, 2, 4, 4]) W = px.ops.constant( "W", np.array([[[[1, 2], [3, 4]]]], dtype=np.float32)) X_conv = px.ops.conv2d(op_name=conv_name, input_layer=in1, weights_layer=W, kernel_size=[2, 2]) xgraph = XGraph() xgraph.add(in1) assert len(xgraph) == 1 assert len(xgraph.get_layer_names()) == 1 assert len(xgraph.get_output_names()) == 1 assert len(xgraph.get_input_names()) == 1 xgraph.add(X_conv) assert len(xgraph) == 2 assert len(xgraph.get_layer_names()) == 2 assert len(xgraph.get_output_names()) == 1 assert len(xgraph.get_input_names()) == 1 xgraph.remove(X_conv.name) assert len(xgraph) == 1 assert len(xgraph.get_layer_names()) == 1 assert len(xgraph.get_output_names()) == 1 assert len(xgraph.get_input_names()) == 1
def test_xgraph_add_remove(self): xgraph = XGraph() xgraph.add( XLayer(name='in1', type=['Input'], bottoms=[], tops=[], targets=[])) assert (len(xgraph) == 1) assert (len(xgraph.get_layer_names()) == 1) assert (len(xgraph.get_output_names()) == 1) assert (len(xgraph.get_input_names()) == 1) X_conv = XLayer(name='conv1', type=['Convolution'], bottoms=['in1'], tops=[], data=ConvData(weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0., 1.], dtype=np.float32)), targets=[]) xgraph.add(X_conv) assert (len(xgraph) == 2) assert (len(xgraph.get_layer_names()) == 2) assert (len(xgraph.get_output_names()) == 1) assert (len(xgraph.get_input_names()) == 1) xgraph.remove(X_conv.name) assert (len(xgraph) == 1) assert (len(xgraph.get_layer_names()) == 1) assert (len(xgraph.get_output_names()) == 1) assert (len(xgraph.get_input_names()) == 1)
def test_xgraph_add_get(self): xgraph = XGraph() xgraph.add(XLayer( name='in1', type=['Input'], bottoms=[], tops=[], targets=[] )) assert len(xgraph) == 1 assert len(xgraph.get_layer_names()) == 1 assert len(xgraph.get_output_names()) == 1 assert len(xgraph.get_input_names()) == 1 assert isinstance(xgraph.get('in1'), XLayer) assert xgraph.get('in1').bottoms == [] assert xgraph.get('in1').tops == [] X_conv = XLayer( name='conv1', type=['Convolution'], bottoms=['in1'], tops=[], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0., 1.], dtype=np.float32) ), targets=[] ) xgraph.add(X_conv) assert len(xgraph) == 2 assert xgraph.get_layer_names() == ['in1', 'conv1'] assert xgraph.get_output_names() == ['conv1'] assert xgraph.get_input_names() == ['in1'] assert xgraph.get('in1').tops == ['conv1'] assert isinstance(xgraph.get('conv1'), XLayer) assert xgraph.get('conv1').bottoms == ['in1'] assert xgraph.get('conv1').tops == [] assert xgraph.get('conv1').type == ['Convolution'] np.testing.assert_array_equal( xgraph.get('conv1').data.weights, np.array([[[[1, 2], [3, 4]]]], dtype=np.float32) ) np.testing.assert_array_equal( xgraph.get('conv1').data.biases, np.array([0., 1.], dtype=np.float32) ) xgraph.get('conv1').data = ConvData( weights=xgraph.get('conv1').data.weights * 2, biases=xgraph.get('conv1').data.biases ) np.testing.assert_array_equal( xgraph.get('conv1').data.weights, np.array([[[[2, 4], [6, 8]]]], dtype=np.float32) ) xgraph.remove(X_conv.name) assert len(xgraph) == 1 assert 'in1' in xgraph assert len(xgraph.get_layer_names()) == 1 assert len(xgraph.get_output_names()) == 1 assert len(xgraph.get_input_names()) == 1
def test_visualize(self): xgraph = XGraph() xgraph.add(XLayer( name='in1', type=['Input'], bottoms=[], tops=[], targets=[] )) xgraph.add(XLayer( name='in2', type=['Input'], bottoms=[], tops=[], targets=[] )) xgraph.add(XLayer( name='conv1', type=['Convolution'], bottoms=['in1'], tops=[], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0., 1.], dtype=np.float32) ), targets=[] )) xgraph.add(XLayer( name='add1', type=['Eltwise'], bottoms=['conv1', 'in2'], tops=[], targets=[] )) xgraph.insert(XLayer( name='conv2', type=['Convolution'], bottoms=['in2'], tops=['add1'], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0., 1.], dtype=np.float32) ), targets=[] )) xgraph.add(XLayer( name='conv3', type=['Convolution'], bottoms=['add1'], tops=[], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0., 1.], dtype=np.float32) ), targets=[] )) xgraph.add(XLayer( name='pool1', type=['Pooling'], bottoms=['add1'], tops=[], targets=[] )) xgraph.add(XLayer( name='add2', type=['Eltwise'], bottoms=['conv3', 'pool1'], tops=[], targets=[] )) assert len(xgraph) == 8 assert xgraph.get_layer_names() == \ ['in1', 'conv1', 'in2', 'conv2', 'add1', 'conv3', 'pool1', 'add2'] out_file = os.path.join(FILE_DIR, 'viz.png') xgraph.visualize(out_file) os.remove(out_file)
def test_copy(self): xgraph = XGraph() xgraph.add(XLayer( name='in1', type=['Input'], bottoms=[], tops=[], targets=[] )) xgraph.add(XLayer( name='in2', type=['Input'], bottoms=[], tops=[], targets=[] )) xgraph.add(XLayer( name='conv1', type=['Convolution'], bottoms=['in1'], tops=[], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0., 1.], dtype=np.float32) ), targets=[] )) xgraph.add(XLayer( name='add1', type=['Eltwise'], bottoms=['conv1', 'in2'], tops=[], targets=[] )) xgraph.insert(XLayer( name='conv2', type=['Convolution'], bottoms=['in2'], tops=['add1'], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0., 1.], dtype=np.float32) ), targets=[] )) xgraph.add(XLayer( name='pool1', type=['Pooling'], bottoms=['add1'], tops=[], targets=[] )) assert len(xgraph) == 6 assert xgraph.get_layer_names() == \ ['in1', 'conv1', 'in2', 'conv2', 'add1', 'pool1'] xg_copy = xgraph.copy() assert len(xg_copy) == 6 assert xg_copy.get_layer_names() == \ ['in1', 'conv1', 'in2', 'conv2', 'add1', 'pool1'] xgc_layers = xg_copy.get_layers() assert xgc_layers[1].type == ['Convolution'] assert xg_copy.get('conv1').type == ['Convolution'] xgc_layers[1].type = ['Convolution2'] assert xg_copy.get('conv1').type == ['Convolution2'] xgc_layers[1].type = ['Convolution'] assert xgc_layers[1].type == ['Convolution'] assert xg_copy.get('conv1').type == ['Convolution'] np.testing.assert_array_equal( xgc_layers[1].data.weights, np.array([[[[1, 2], [3, 4]]]], dtype=np.float32) ) np.testing.assert_array_equal( xgc_layers[1].data.biases, np.array([0., 1.], dtype=np.float32) ) xgraph.get('conv1').data = ConvData( weights=xgc_layers[1].data.weights * 2, biases=xgc_layers[1].data.biases ) np.testing.assert_array_equal( xgraph.get('conv1').data.weights, np.array([[[[2, 4], [6, 8]]]], dtype=np.float32) ) np.testing.assert_array_equal( xgc_layers[1].data.weights, np.array([[[[1, 2], [3, 4]]]], dtype=np.float32) ) np.testing.assert_array_equal( xgc_layers[1].data.biases, np.array([0., 1.], dtype=np.float32) )
def test_xgraph_device_tagging(self): xgraph = XGraph() xgraph.add(XLayer( name='in1', type=['Input'], bottoms=[], tops=[], targets=[] )) xgraph.add(XLayer( name='in2', type=['Input'], bottoms=[], tops=[], targets=[] )) xgraph.add(XLayer( name='conv1', type=['Convolution'], bottoms=['in1'], tops=[], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0., 1.], dtype=np.float32) ), targets=[] )) xgraph.add(XLayer( name='add1', type=['Eltwise'], bottoms=['conv1', 'in2'], tops=[], targets=[] )) xgraph.insert(XLayer( name='conv2', type=['Convolution'], bottoms=['in2'], tops=['add1'], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0., 1.], dtype=np.float32) ), targets=[] )) xgraph.add(XLayer( name='pool1', type=['Pooling'], bottoms=['add1'], tops=[], targets=[] )) xgraph = partition(xgraph, ['cpu']) assert len(xgraph) == 6 xlayers = xgraph.get_layers() assert xgraph.get_layer_names() == \ ['in1', 'conv1', 'in2', 'conv2', 'add1', 'pool1'] assert set(xlayers[0].targets) == set(['cpu', 'qsim']) assert set(xlayers[1].targets) == set(['cpu', 'qsim', 'test']) assert set(xlayers[2].targets) == set(['cpu', 'qsim']) assert set(xlayers[3].targets) == set(['cpu', 'qsim', 'test']) assert set(xlayers[4].targets) == set(['cpu', 'qsim']) assert set(xlayers[5].targets) == set(['cpu', 'qsim', 'test']) xgraph.remove('conv1') assert len(xgraph) == 5 xlayers = xgraph.get_layers() assert xgraph.get_layer_names() == \ ['in1', 'in2', 'conv2', 'add1', 'pool1'] assert xlayers[3].type[0] == 'Eltwise' assert xlayers[3].bottoms == ['in1', 'conv2'] assert set(xlayers[0].targets) == set(['cpu', 'qsim']) assert set(xlayers[1].targets) == set(['cpu', 'qsim']) assert set(xlayers[2].targets) == set(['cpu', 'qsim', 'test']) assert set(xlayers[3].targets) == set(['cpu', 'qsim']) assert set(xlayers[4].targets) == set(['cpu', 'qsim', 'test'])
def test_xgraph_insert(self): xgraph = XGraph() xgraph.add(XLayer( name='in1', type=['Input'], bottoms=[], tops=[], targets=[] )) assert(len(xgraph) == 1) assert(len(xgraph.get_layer_names()) == 1) assert(len(xgraph.get_output_names()) == 1) assert(len(xgraph.get_input_names()) == 1) X_conv = XLayer( name='conv1', type=['Convolution'], bottoms=['in1'], tops=[], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0., 1.], dtype=np.float32) ), targets=[] ) xgraph.add(X_conv) assert len(xgraph) == 2 assert len(xgraph.get_layer_names()) == 2 assert len(xgraph.get_output_names()) == 1 assert len(xgraph.get_input_names()) == 1 X_pool = XLayer( name='pool1', type=['Pooling'], bottoms=['in1'], tops=['conv1'], targets=[] ) xgraph.insert(X_pool) assert len(xgraph) == 3 assert len(xgraph.get_layer_names()) == 3 assert len(xgraph.get_output_names()) == 1 assert len(xgraph.get_input_names()) == 1 xlayers = xgraph.get_layers() assert xlayers[0].name == 'in1' assert xlayers[0].bottoms == [] assert xlayers[0].tops == ['pool1'] assert xlayers[1].name == 'pool1' assert xlayers[1].bottoms == ['in1'] assert xlayers[1].tops == ['conv1'] assert xlayers[2].name == 'conv1' assert xlayers[2].bottoms == ['pool1'] assert xlayers[2].tops == [] X_in2 = XLayer( name='in2', type=['Input'], bottoms=[], tops=[], targets=[] ) xgraph.add(X_in2) X_add = XLayer( name='add1', type=['Eltwise'], bottoms=['conv1', 'in2'], tops=[], targets=[] ) xgraph.add(X_add) X_conv2 = XLayer( name='conv2', type=['Convolution'], bottoms=['in2'], tops=['add1'], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0., 1.], dtype=np.float32) ), targets=[] ) xgraph.insert(X_conv2) assert(len(xgraph) == 6) assert(len(xgraph.get_layer_names()) == 6) assert(len(xgraph.get_output_names()) == 1) assert(len(xgraph.get_input_names()) == 2) xlayers = xgraph.get_layers() assert xlayers[0].name == 'in1' assert xlayers[0].bottoms == [] assert xlayers[0].tops == ['pool1'] assert xlayers[1].name == 'pool1' assert xlayers[1].bottoms == ['in1'] assert xlayers[1].tops == ['conv1'] assert xlayers[2].name == 'conv1' assert xlayers[2].bottoms == ['pool1'] assert xlayers[2].tops == ['add1'] assert xlayers[3].name == 'in2' assert xlayers[3].bottoms == [] assert xlayers[3].tops == ['conv2'] assert xlayers[4].name == 'conv2' assert xlayers[4].bottoms == ['in2'] assert xlayers[4].tops == ['add1'] assert xlayers[5].name == 'add1' assert xlayers[5].bottoms == ['conv1', 'conv2'] assert xlayers[5].tops == []
def _test_add_get(in_name: str, conv_name: str): expected_in_name = px.stringify(in_name) expected_conv_name = px.stringify(conv_name) in1 = px.ops.input(op_name=expected_in_name, shape=[1, 2, 4, 4]) W = px.ops.constant( "W", np.array([[[[1, 2], [3, 4]]]], dtype=np.float32)) X_conv = px.ops.conv2d(op_name=conv_name, input_layer=in1, weights_layer=W, kernel_size=[2, 2]) xgraph = XGraph() xgraph.add(in1) assert len(xgraph) == 1 assert len(xgraph.get_layer_names()) == 1 assert len(xgraph.get_output_names()) == 1 assert len(xgraph.get_input_names()) == 1 assert isinstance(xgraph.get(in_name), XLayer) assert xgraph.get(in_name).bottoms == [] assert xgraph.get(in_name).tops == [] xgraph.add(X_conv) assert len(xgraph) == 2 assert xgraph.get_layer_names() == [ expected_in_name, expected_conv_name ] assert xgraph.get_output_names() == [expected_conv_name] assert xgraph.get_input_names() == [expected_in_name] assert xgraph.get(in_name).tops == [expected_conv_name] assert isinstance(xgraph.get(conv_name), XLayer) assert xgraph.get(conv_name).bottoms == [expected_in_name] assert xgraph.get(conv_name).tops == [] assert xgraph.get(conv_name).type == ["Convolution"] np.testing.assert_array_equal( xgraph.get(conv_name).data.weights, np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), ) np.testing.assert_array_equal( xgraph.get(conv_name).data.biases, np.array([0.0], dtype=np.float32), ) xgraph.get(conv_name).data = ConvData( weights=xgraph.get(conv_name).data.weights * 2, biases=xgraph.get(conv_name).data.biases, ) np.testing.assert_array_equal( xgraph.get(conv_name).data.weights, np.array([[[[2, 4], [6, 8]]]], dtype=np.float32), ) xgraph.remove(X_conv.name) assert len(xgraph) == 1 assert in_name in xgraph assert len(xgraph.get_layer_names()) == 1 assert len(xgraph.get_output_names()) == 1 assert len(xgraph.get_input_names()) == 1
def test_visualize(self): xgraph = XGraph() xgraph.add( XLayer(name="in1", type=["Input"], bottoms=[], tops=[], targets=[])) xgraph.add( XLayer(name="in2", type=["Input"], bottoms=[], tops=[], targets=[])) xgraph.add( XLayer( name="conv1", type=["Convolution"], bottoms=["in1"], tops=[], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0.0, 1.0], dtype=np.float32), ), targets=[], )) xgraph.add( XLayer( name="add1", type=["Eltwise"], bottoms=["conv1", "in2"], tops=[], targets=[], )) xgraph.insert( XLayer( name="conv2", type=["Convolution"], bottoms=["in2"], tops=["add1"], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0.0, 1.0], dtype=np.float32), ), targets=[], )) xgraph.add( XLayer( name="conv3", type=["Convolution"], bottoms=["add1"], tops=[], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0.0, 1.0], dtype=np.float32), ), targets=[], )) xgraph.add( XLayer(name="pool1", type=["Pooling"], bottoms=["add1"], tops=[], targets=[])) xgraph.add( XLayer( name="add2", type=["Eltwise"], bottoms=["conv3", "pool1"], tops=[], targets=[], )) assert len(xgraph) == 8 assert xgraph.get_layer_names() == [ "in1", "conv1", "in2", "conv2", "add1", "conv3", "pool1", "add2", ] out_file = os.path.join(FILE_DIR, "viz.png") xgraph.visualize(out_file) os.remove(out_file)
def _test_copy( in1_name: str, in2_name: str, conv1_name: str, add_name: str, conv2_name: str, pool_name: str, ): expected_in1_name = px.stringify(in1_name) expected_in2_name = px.stringify(in2_name) expected_conv1_name = px.stringify(conv1_name) expected_conv2_name = px.stringify(conv2_name) expected_pool_name = px.stringify(pool_name) expected_add_name = px.stringify(add_name) in1 = px.ops.input(op_name=in1_name, shape=[1, 2, 4, 4]) in2 = px.ops.input(op_name=in2_name, shape=[1, 2, 4, 4]) W = px.ops.constant( "W", np.array([[[[1, 2], [3, 4]]]], dtype=np.float32)) X_conv = px.ops.conv2d(op_name=conv1_name, input_layer=in1, weights_layer=W, kernel_size=[2, 2]) X_add = px.ops.eltwise(op_name=add_name, lhs_layer=X_conv, rhs_layer=in2) X_conv2 = px.ops.conv2d(op_name=conv2_name, input_layer=in2, weights_layer=W, kernel_size=[2, 2]) X_pool = px.ops.pool2d(op_name=pool_name, input_layer=X_add, pool_type="Avg", pool_size=[2, 2]) xgraph = XGraph() xgraph.add(in1) xgraph.add(in2) xgraph.add(X_conv) xgraph.add(X_add) xgraph.insert( XLayer( name=conv2_name, type=["Convolution"], bottoms=[in2_name], tops=[add_name], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0.0, 1.0], dtype=np.float32), ), targets=[], )) xgraph.add(X_pool) assert len(xgraph) == 6 assert xgraph.get_layer_names() == [ expected_in1_name, expected_conv1_name, expected_in2_name, expected_conv2_name, expected_add_name, expected_pool_name, ] xg_copy = xgraph.copy() assert len(xg_copy) == 6 assert xg_copy.get_layer_names() == [ expected_in1_name, expected_conv1_name, expected_in2_name, expected_conv2_name, expected_add_name, expected_pool_name, ] xgc_layers = xg_copy.get_layers() assert xgc_layers[1].type == ["Convolution"] assert xg_copy.get(conv1_name).type == ["Convolution"] xgc_layers[1].type = ["Convolution2"] assert xg_copy.get(conv1_name).type == ["Convolution2"] xgc_layers[1].type = ["Convolution"] assert xgc_layers[1].type == ["Convolution"] assert xg_copy.get(conv1_name).type == ["Convolution"] np.testing.assert_array_equal( xgc_layers[1].data.weights, np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), ) np.testing.assert_array_equal(xgc_layers[1].data.biases, np.array([0.0], dtype=np.float32)) xgraph.get(conv1_name).data = ConvData( weights=xgc_layers[1].data.weights * 2, biases=xgc_layers[1].data.biases) np.testing.assert_array_equal( xgraph.get(conv1_name).data.weights, np.array([[[[2, 4], [6, 8]]]], dtype=np.float32), ) np.testing.assert_array_equal( xgc_layers[1].data.weights, np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), ) np.testing.assert_array_equal(xgc_layers[1].data.biases, np.array([0.0], dtype=np.float32))
def test_xgraph_device_tagging(self): xgraph = XGraph() xgraph.add( XLayer(name="in1", type=["Input"], bottoms=[], tops=[], targets=[])) xgraph.add( XLayer(name="in2", type=["Input"], bottoms=[], tops=[], targets=[])) xgraph.add( XLayer( name="conv1", type=["Convolution"], bottoms=["in1"], tops=[], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0.0, 1.0], dtype=np.float32), ), targets=[], )) xgraph.add( XLayer( name="add1", type=["Eltwise"], bottoms=["conv1", "in2"], tops=[], targets=[], )) xgraph.insert( XLayer( name="conv2", type=["Convolution"], bottoms=["in2"], tops=["add1"], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0.0, 1.0], dtype=np.float32), ), targets=[], )) xgraph.add( XLayer(name="pool1", type=["Pooling"], bottoms=["add1"], tops=[], targets=[])) xgraph = partition(xgraph, ["cpu"]) assert len(xgraph) == 6 xlayers = xgraph.get_layers() assert xgraph.get_layer_names() == [ "in1", "conv1", "in2", "conv2", "add1", "pool1", ] assert set(xlayers[0].targets) == set(["cpu", "qsim"]) assert set(xlayers[1].targets) == set(["cpu", "qsim", "test"]) assert set(xlayers[2].targets) == set(["cpu", "qsim"]) assert set(xlayers[3].targets) == set(["cpu", "qsim", "test"]) assert set(xlayers[4].targets) == set(["cpu", "qsim"]) assert set(xlayers[5].targets) == set(["cpu", "qsim", "test"]) xgraph.remove("conv1") assert len(xgraph) == 5 xlayers = xgraph.get_layers() assert xgraph.get_layer_names() == [ "in1", "in2", "conv2", "add1", "pool1" ] assert xlayers[3].type[0] == "Eltwise" assert xlayers[3].bottoms == ["in1", "conv2"] assert set(xlayers[0].targets) == set(["cpu", "qsim"]) assert set(xlayers[1].targets) == set(["cpu", "qsim"]) assert set(xlayers[2].targets) == set(["cpu", "qsim", "test"]) assert set(xlayers[3].targets) == set(["cpu", "qsim"]) assert set(xlayers[4].targets) == set(["cpu", "qsim", "test"])
def _test_xgraph_insert( in_name: str, in2_name: str, conv_name: str, pool_name: str, add_name: str, conv2_name: str, ): expected_in_name = px.stringify(in_name) expected_in2_name = px.stringify(in2_name) expected_conv_name = px.stringify(conv_name) expected_pool_name = px.stringify(pool_name) expected_add_name = px.stringify(add_name) expected_conv2_name = px.stringify(conv2_name) in1 = px.ops.input(op_name=in_name, shape=[1, 2, 4, 4]) W = px.ops.constant( "W", np.array([[[[1, 2], [3, 4]]]], dtype=np.float32)) X_conv = px.ops.conv2d(op_name=conv_name, input_layer=in1, weights_layer=W, kernel_size=[2, 2]) # X_pool = px.ops.pool2d(op_name=pool_name, input_layer=X_conv, ) xgraph = XGraph() xgraph.add(in1) assert len(xgraph) == 1 assert len(xgraph.get_layer_names()) == 1 assert len(xgraph.get_output_names()) == 1 assert len(xgraph.get_input_names()) == 1 xgraph.add(X_conv) assert len(xgraph) == 2 assert len(xgraph.get_layer_names()) == 2 assert len(xgraph.get_output_names()) == 1 assert len(xgraph.get_input_names()) == 1 X_pool = XLayer( name=pool_name, type=["Pooling"], bottoms=[in_name], tops=[conv_name], targets=[], ) xgraph.insert(X_pool) assert len(xgraph) == 3 assert len(xgraph.get_layer_names()) == 3 assert len(xgraph.get_output_names()) == 1 assert len(xgraph.get_input_names()) == 1 xlayers = xgraph.get_layers() assert xlayers[0].name == expected_in_name assert xlayers[0].bottoms == [] assert xlayers[0].tops == [expected_pool_name] assert xlayers[1].name == expected_pool_name assert xlayers[1].bottoms == [expected_in_name] assert xlayers[1].tops == [expected_conv_name] assert xlayers[2].name == expected_conv_name assert xlayers[2].bottoms == [expected_pool_name] assert xlayers[2].tops == [] X_in2 = px.ops.input(op_name=in2_name, shape=[1, 2, 4, 4]) xgraph.add(X_in2) X_add = XLayer( name=add_name, type=["Eltwise"], bottoms=[conv_name, in2_name], tops=[], targets=[], ) xgraph.add(X_add) X_conv2 = XLayer( name=conv2_name, type=["Convolution"], bottoms=[in2_name], tops=[add_name], data=ConvData( weights=np.array([[[[1, 2], [3, 4]]]], dtype=np.float32), biases=np.array([0.0, 1.0], dtype=np.float32), ), targets=[], ) xgraph.insert(X_conv2) assert len(xgraph) == 6 assert len(xgraph.get_layer_names()) == 6 assert len(xgraph.get_output_names()) == 1 assert len(xgraph.get_input_names()) == 2 xlayers = xgraph.get_layers() assert xlayers[0].name == expected_in_name assert xlayers[0].bottoms == [] assert xlayers[0].tops == [expected_pool_name] assert xlayers[1].name == expected_pool_name assert xlayers[1].bottoms == [expected_in_name] assert xlayers[1].tops == [expected_conv_name] assert xlayers[2].name == expected_conv_name assert xlayers[2].bottoms == [expected_pool_name] assert xlayers[2].tops == [expected_add_name] assert xlayers[3].name == expected_in2_name assert xlayers[3].bottoms == [] assert xlayers[3].tops == [expected_conv2_name] assert xlayers[4].name == expected_conv2_name assert xlayers[4].bottoms == [expected_in2_name] assert xlayers[4].tops == [expected_add_name] assert xlayers[5].name == expected_add_name assert xlayers[5].bottoms == [ expected_conv_name, expected_conv2_name ] assert xlayers[5].tops == []