Example #1
0
def run_q_learning_forest(S, r1, r2):
    forest = WrappedForest(S, r1, r2)
    n_episodes = 10000
    how_often = n_episodes / 100

    stats = IterationStats('stats/ql_forest.csv', dims=2)

    def on_episode(episode, time, q_learner, q):
        forest.print_policy(print, q_learner.get_policy())
        stats.save_iteration(episode, time,
                             numpy.nanmean(numpy.nanmax(q, axis=0)), q)

    def is_done(state, action, next_state):
        if next_state.state_num == 0:
            return True
        return False

    gamma = 0.99
    start = time.time()
    numpy.random.seed(5263228)
    q_l = QLearning(forest,
                    0.5,
                    0.2,
                    gamma,
                    on_episode=on_episode,
                    start_at_0=True,
                    alpha=0.1,
                    is_done=is_done,
                    every_n_episode=how_often)
    stats.start_writing()
    q_l.run(n_episodes)
    stats.done_writing()
    forest.print_policy(print, q_l.get_policy())
    print('took {} s'.format(time.time() - start))

    stats = IterationStats('stats/ql_forest.csv', dims=2)
    analysis.create_iteration_value_graph(
        stats, 'average Q',
        'Average Q for each iteration on Forest Q Learning', 'forest_results')
Example #2
0
def main(algorithm, track, x_start, y_start, discount, learning_rate, threshold, max_iterations, epsilon=None, reset_on_crash=False):
    """
    Program entry. Runs selected algorithm on selected track, at given coordinates, with given parameters
    :param algorithm: String
    :param track: List
    :param x_start: Int
    :param y_start: Int
    :param discount: Float
    :param learning_rate: Float
    :param threshold: Float
    :param max_iterations: Int
    :param epsilon: Float
    :param reset_on_crash: Boolean
    :return: None
    """
    with open(track) as f:
        specs = f.readline().strip().split(',')
        rows = int(specs[0])
        cols = int(specs[1])
        layout = f.read().splitlines()

        initial_state = (x_start, y_start, 0, 0)
        initial_action = (0, 0)

        agent = Car(initial_action, epsilon)
        environment = RaceTrack(rows, cols, layout, initial_state, reset_on_crash=reset_on_crash)

        if algorithm == 'value_iteration':
            value_iterator = ValueIteration(discount, threshold, max_iterations, environment, agent)
            value_iterator.run()
            path = value_iterator.extract_policy(initial_state)
            value_iterator.plot_max_diffs()
        elif algorithm == 'q_learning':
            q_learner = QLearning(discount, learning_rate, threshold, max_iterations, environment, agent)
            path = q_learner.run()
            q_learner.plot_avg_cost()
        elif algorithm == 'sarsa':
            sarsa = Sarsa(discount, learning_rate, threshold, max_iterations, environment, agent)
            path = sarsa.run()
            sarsa.plot_avg_cost()
        else:
            print("No algorithm selected")
            return None
        draw_track(path, layout)
Example #3
0
def run_q_learning_grid_world():
    world = GridWorld('simple_grid.txt', -0.01, include_treasure=False)
    n_episodes = 500000
    how_often = n_episodes / 500

    stats = IterationStats('stats/ql_simple_grid.csv', dims=5)

    def on_update(state, action, next_state, q_learner):
        #print('[{},{}] - {} -> [{},{}]'.format(state.x, state.y, action[0], next_state.x, next_state.y))
        pass

    def on_episode(episode, time, q_learner, q):
        world.print_policy(print, q_learner.get_policy())
        stats.save_iteration(episode, time,
                             numpy.nanmean(numpy.nanmax(q, axis=0)), q)
        #time.sleep(1)

    for state in world.get_states():
        if state.tile_type == GridWorldTile.GOAL:
            goal_state = state
            break

    def initialize_toward_goal(state: GridWorldTile):
        actions = state.get_actions()
        if len(actions) == 0:
            return []
        diff_x = goal_state.x - state.x
        diff_y = goal_state.y - state.y
        best_value = 0.1
        if len(actions) == 5 and actions[4][0].startswith('get treasure'):
            best_action = actions[4][0]
        elif abs(diff_x) >= abs(diff_y):
            if diff_x > 0:
                best_action = 'move east'
            else:
                best_action = 'move west'
        else:
            if diff_y < 0:
                best_action = 'move north'
            else:
                best_action = 'move south'
        values = [-0.1] * len(actions)
        for i, action in enumerate(actions):
            if action[0] == best_action:
                values[i] = best_value
        return values

    gamma = 0.99
    q_l = QLearning(world,
                    0.5,
                    0.05,
                    gamma,
                    on_update=on_update,
                    on_episode=on_episode,
                    initializer=initialize_toward_goal,
                    start_at_0=True,
                    alpha=0.1,
                    every_n_episode=how_often)
    stats.start_writing()
    q_l.run(n_episodes)
    stats.done_writing()
    world.print_policy(print, q_l.get_policy())